Publications(* Corresponding author)
2023
197. Wang J*, Yan R, Wu GX, Liu YM, Wang MR, Zeng N, Jiang F, Wang HM, He W, Wu MS, Ju WM, and Chen JM, 2023. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River Basin. Science Bulletin, 68(19): 2160-2163.
196. Zhu TT, Zhou YL*, Ju WM, Li J, Hu L, Yuan S, and Xing XL,2023. The linkage between methane fluxes and gross primary productivity at diurnal and seasonal scales on a rice paddy field in Eastern China. Journal of Geophysical Research-Biogeosciences, 128(9): DOI10.1029/2023JG007632, e2023JG007632.
195. Hu L, Zhao TJ*, Ju WM, Peng ZQ, Shi JC, Rodriguez-Fernandez J, Wigneron JP, Cosh MH, Yang K, Lu H, and Yao PP. A twenty-year dataset of soil moisture and vegetation optical depth from AMSR-E/2 measurements using the multi-channel collaborative algorithm. Remote Sensing of Environment, 292: 113595, DOI10.1016/j.rse.2023.113595.
194. Yan R, Wang J*, Ju WM, Goll DS, Jain AK, Sitch S, Tian HQ, Benjamin P, Jiang F, and Wang HM, 2023. Interactive effects of the El Nino-Southern Oscillation and Indian Ocean Dipole on the tropical net ecosystem productivity. Agricultural and Forest Meteorology, 336:109472, DOI10.1016/j.agrformet.2023.109472.
193. Zhang ZY, Cescatti A, Wang YP, Gentine P, Xiao JF, Guanter L, Huete AR, Wu J Chen JM, Ju WM, Penuelas J, Zhang, YG*,2023. Large diurnal compensatory effects mitigate the response of Amazonian forests to atmospheric warming and drying. Science Advances, 9(21): eabq4974,DOI10.1126/sciadv.abq4974.
192. He W, Jiang F*, Ju WM, Byrne B, Xiao JF, Nguyen NT, Wu MS, Wang SH, Wang J, Rodenbeck C, Li X, Scholze M, Monteil G, Wang HM, Zhou YL, He QN, and Chen JM, 2023.Do State-Of-The-Art Atmospheric CO2 Inverse Models Capture Drought Impacts on the European Land Carbon Uptake? Journal of Advances in Modelling Earth Systems, 15(6):e2022MS003150,DOI10.1029/2022MS003150.
191. Wang J*, Zeng N, Wang MR, Jiang F, Chevallier F, Crowell S, He W, Johnson MS Liu JJ, Liu ZQ, Miller SM, Philip S, Wang HM, Wu MS, Ju WM, Feng SZ, and Jia MW, 2023. Anomalous Net Biome Exchange Over Amazonian Rainforests Induced by the 2015/16 El Nino: Soil Dryness-Shaped Spatial Pattern but Temperature-dominated Total Flux. Geophysical Research Letters, 50(11): e2023GL103379,DOI10.1029/2023GL103379.
190. He W, Jiang F*, Ju WM, Chevallier F, Baker DF,Wang J, Wu MS, Johnson MS Philip S, Wang HM, Bertolacci M, Liu ZQ, Zeng N, and Chen JM,2023.Improved Constraints on the Recent Terrestrial Carbon Sink Over China by Assimilating OCO-2 XCO2 Retrievals. Journal of Geophysical Research-Atmosphere, 128(4). e2022JD037773, DOI10.1029/2022JD037773.
189. Chen B, Wang PY, Wang SQ*, Ju WM, Liu ZH, Zhang YH,2023. Simulating canopy carbonyl sulfide uptake of two forest stands through an improved ecosystem model and parameter optimization using an ensemble Kalman filter. Ecological Modelling, 475: 110212, DOI10.1016/j.ecolmodel.2022.110212.
188. Li L, Zhan WF*, Ju WM, Penuelas J, Zhu ZC, Peng SS, Zhu XL, Liu ZH, Zhou YY, Li JF, Lai JM, Huang F, Yin GF, Fu YS, Li MC, Yu C, 2023. Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sensing of Environment, 287: 113481, DOI10.1016/j.rse.2023.113481
187. Fan MH, Ju WM*, Chen JM, Fan WL, He W, Qiu F, Hu XY, Li J, 2023. A normalized spectral angle index for estimating the probability of viewing sunlit leaves from satellite data. IEEE Transaction on Geoscience and Remote Sensing, 61: 4401519, DOI10.1109/TGRS.2023.3249129.
186. Cheng N, Zhou YL*, He W, Ju WM, Zhu TT, Liu YB, Song P, Bi WJ, Zhang XY, Wei XA, 2023.Exploring light use efficiency models capacities in characterizing environmental impacts on paddy rice productivity. International Journal of Applied Earth Observation and Geoinformation, 117:103179, DOI10.1016/j.jag.2023.103179.
185.Wei XA, He W, Zhou YL*, Cheng N, Xiao JF, Bi WJ, Liu YB, Sun SL, Ju WM, 2023. Increased sensitivity of global vegetation productivity to drought over the recent three decades. Journal of Geophysical Research-Atmosphere, 128(7): e2022JD037504. DOI10.1029/2022JD037504.
184. He QN, Ju WM*, Li XCM, 2023. Response of global terrestrial carbon fluxes to drought from 1981 to 2016. Atmosphere, 14(2):229. DOI10.3390/atmos14020229.
183. Zhang ZY, Zhou YL, Ju WM, Chen JM, Xiao JF, 2023. Accumulated soil moisture deficit better indicates the effect of soil water stress on light use efficiency of grasslands during drought years. Agricultural and Forest Meteorology,329:109276.DOI10.1016/j.agrformet.2022.109276.
182. Zhang LY, Jiang F*, He W, Wu MS, Wang J, Ju WM,Wang HM, Zhang YG, Sitch S, Walker AP, Yue X, Feng SZ, Jia MW, Chen JM, 2023.A robust estimate of continental-scale terrestrial carbon sinks using GOSAT XCO2 retrievals. Geophysical Research Letters, 50(6), e2023GL102815,DOI10.1029/2023GL102815. (2023-06-18).
2022
181. Huang XY, Zhang Q, Hu L, Zhu TT, Zhou X, Zhang YW, Xu ZH, Ju WM*,2022.Monitoring Damage Caused by Pantana phyllostachysae Chao to Moso Bamboo Forests Using Sentinel-1 and Sentinel-2 Images. Remote Sensing, 14(19):5012,DOI10.3390/rs14195012.
180. Wang SH, Zhang YG,* Ju WM, Wu MS, Liu L, He W, Penuelas J, 2022. Temporally corrected long-term satellite solar-induced fluorescence leads to improved estimation of global trends in vegetation photosynthesis during 1995-2018. ISPRS Journal of Photogrammetry and Remote Sensing, 194: 222-234.
179. Wang J*, Jiang F*, Ju WM, Wang MR, Sitch S,Arora VK, Chen JM, Goll DS, He W, Jain AK, Li X, Joiner J, Poulter B, Seferian R, Wang HM, Wu MS, Xiao JF, Yuan, WP, Yue X, and Zaehle S, 2022. Enhanced India-Africa Carbon Uptake and Asia-Pacific Carbon Release Associated With the 2019 Extreme Positive Indian Ocean Dipole. Geophysical Research Letters, 49(22): e2022GL100950, DOI10.1029/2022GL100950.
178. Sun SL*, Liu YB, Chen HS, Ju WM, Xu CY, Liu Y, Zhou BT, Zhou Y, Zhou YL , and Yu M, 2022. Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agricultural and Forest Meteorology, 324: 109118,DOI10.1016/j.agrformet.2022.109118.
177. Chen JM*, Wang R, Liu YH, He LM, Croft H, Luo XZ, Wang H, Smith NG, Keenan TF, Prentice IC, Zhang YG, Ju WM, and Dong N, 2022. Global datasets of leaf photosynthetic capacity for ecological and earth system research. Earth System Science Data, 14(9):4077-4093.
176. Zhang XY, Zhou YL*, He W*, Ju WM, Liu YB, Bi WJ, Cheng N, and Wei XN, 2022, Land cover change instead of solar radiation change dominates the forest GPP increase during the recent phase of the Shelterbelt Program for Pearl River. Ecological Indicator, 136, 108664, DOI10.1016/j.ecolind.2022.108664.
175. Yang X, Lu XH, Shi JM, Li J, and Ju WM*, 2022. Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data. Spectroscopy and Spectral Analysis, 42(3): 866-872.)
174. Jiang F*, Ju WM, He W, Wu MS, Wang HM, Wang J, Jia MW, Feng SZ, Zhang LY, Chen JM, 2022. A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021). Earth System Science Data, 14(7): 3013-3037.
173. Zhang ZY, Ju WM*, Zhou YL, and Li XY*, 2022. Revisiting the cumulative effects of drought on global gross primary productivity based on new long-term series data (1982-2018). Global Change Biology, 28(11):3620-3635.
172. Zhang ZY, Li XY, Ju WM*, Zhou YL, and Cheng XF, 2022.Improved estimation of global gross primary productivity during 1981-2020 using the optimized P model. Science of the Total Environment, 888(2), 156172, DOI10.1016/j.scitotenv.2022.156172.
171. Feng SZ, Jiang F*, Wang HM, Shen Y, Zheng YH, Zhang LY, Lou CX, and Ju WM, 2022. Anthropogenic emissions estimated using surface observations and their impacts on PM2.5 source apportionment over the Yangtze River Delta, China. Science of Total Environment, 828, 154522, DOI10.1016/j.scitotenv.2022.154522.
170. Zhang ZY, Zhang XK, Porcar-Castell A, Chen JM, Ju WM, Wu LS, Wu YF, and Zhang YG*, 2022. Sun-induced chlorophyll fluorescence is more strongly related to photosynthesis with hemispherical than nadir measurements: Evidence from field observations and model simulations. Remote Sensing of Environment, 279, 113118, DOI10.1016/j.rse.2022.113118.
169. Wei XN, He W, Zhou YL*, Ju WM, Xiao JF, Li X, Liu YB, Xu SH, Bi WJ, Zhang XY and Cheng N, 2022. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecological Indicator, 136, 108646, DOI10.1016/j.ecolind.2022.108646.
168. Li J, Lu XH, Ju WM*, Li J, Zhu SH, and Zhou YL, 2022. Seasonal changes of leaf chlorophyll content as a proxy of photosynthetic capacity in winter wheat and paddy rice. Ecological Indicators, 141, 109086, DOI10.1016/j.ecolind.2022.109086.
167. Bi WJ, He W, Zhou YL*, Ju WM, Liu YB, Liu Y, Zhang XY, Wei XN, and Cheng N, 2022. A global 0.05 degrees dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020. Scientific data, 9(1), 213,DOI10.1038/s41597-022-01309-2.
165. Wang XP, Chen JM*, Ju WM, and Zhang YG, 2022. Seasonal variations in leaf maximum photosynthetic capacity and its dependence on climate factors across global FLUXNET sites. Journal of Geophysical Research-Biogeosciences, 127(5): e2021JG006709, DOI10.1029/2021JG006709.
164. He W, Jiang F*, Wu MS*, Ju WM, Scholze M, Chen JM, Byrne B, Liu JJ, Wang HM, Wang J, Wang SH, Zhou YL, Zhang CH, Nguyen NT, Shen Y, and Chen Z, 2022. China's Terrestrial Carbon Sink Over 2010-2015 Constrained by satellite observations of atmospheric CO2 and land surface variables. Journal of Geophysical Research-Biogeosciences, 127(2),e2021JG006644,DOI10.1029/2021JG006644.
163. Lu XH*, Croft H, Chen JM, Luo YQ, and Ju WM*, 2022. Estimating photosynthetic capacity from optimized Rubisco-chlorophyll relationships among vegetation types and under global change. Environmental Research Letters, 17(1): 014028, DOI10.1088/1748-9326/ac444d.
162. Xu MZ, Liu RG*, Chen JM*, Liu Y, Wolanin A, Croft H, He LM, Shang R, Ju WM, Zhang YG, He YH, Wang R, 2022. A 21-year time series of global leaf chlorophyll content maps from MODIS imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 4413513, DOI10.1109/TGRS.2022.3204185.
161. Xu MZ, Liu RG*, Chen JM*, Shang R, Liu Y, Qi L, Croft H, Ju WM, Zhang YG, He YH, Qiu F, Li J, and Lin QA, 2022.Retrieving global leaf chlorophyll content from MERIS data using a neural network method. ISPRS Journal of Photogrammetry and Remote Sensing, 192: 66-82.
160. Wu CY*, Peng J*, Ciais P, Penuelas J, Wang HJ, Begueria S, Black TA,Jassal RS, Zhang XY, Yuan WP, Liang ER, Wang XY, Hua H, Liu RG, Ju WM, Fu YSH, and Ge QS, 2022.Increased drought effects on the phenology of autumn leaf senescence. Nature Climate Change, DOI10.1038/s41558-022-01464-9.
2021
159. Huang XY, Xu, ZH, Yang X, Shi JM,and Ju WM*, 2021. Monitoring the severity of Pantana phyllostachysae Chao on bamboo using leaf hyperspectral data. Remote Sensing, 13(20): 4146.
158. Wang MR, Wang J*, Cai QX, Zeng N, Lu XH, Yang RQ, Jiang F, Wang HM, and Ju WM, 2021. Considerable uncertainties in simulating land carbon sinks induced by different precipitation products. Journal of Geophysical Research-Biogeosciences, 126(10): e2021JG006524, DOI: 10.1029/2021JG006524.
157. Peng J, Wu CY*, Zhang XY, Ju WM, Wang XY, Lu LL, and Liu YB, 2021. Incorporating water availability into autumn phenological model improved China's terrestrial gross primary productivity (GPP) simulation. Environmental Research Letters, 16(9): 094012, DOI: 10.1088/1748-9326/ac1a3b.
156. Zhang ZY, Ju WM*, and Zhou YL, 2021. The effect of water stress on net primary productivity in northwest China. Environmental Science and Pollution Research, 28:65885–65898.
155. Wang J, Jiang F*, Wang HM, Qiu B, Wu MS, He W, Ju WM, Zhang YG, Chen JM, and Zhou YL, 2021. Constraining global terrestrial gross primary productivity in a global carbon assimilation system with OCO-2 chlorophyll fluorescence data. Agricultural and Forest Meteorology, 304: 108424, DOI: 10.1016/j.agrformet.2021.108424.
154. Wang MM, Wang SQ*, Zhao J*, Ju WM, and Hao Z, 2021. Global positive gross primary productivity extremes and climate contributions during 1982-2016. Science of the Total Environment, 774:145703, DOI: 10.1016/j.scitotenv.2021.145703.
153. He QN, Ju WM*, Dai SP, He, W, Song L, Wang SH, Li XCA, and Mao GX, 2021. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model. Journal of Geophysical Research-Biogeosciences, 126(6): e2020JG005944, DOI: 10.1029/2020JG005944.
152. Ma LX, Zheng G*, Ying Q, Hancock S, Ju WM, and Yu DS, 2021.Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agricultural and Forest Meteorology, 301, 108346, DOI: 10.1016/j.agrformet.2021.108346.
151. Zhang Q, Chen JM*, Ju WM, Zhang YG, Li ZH, and He LM, Pacheco-Labrador J, Li J, Qiu B, Zhang XK, Qiu F, Chen B, Chou SR, Zhang ZY, and Shan N, 2021. Ground-based multiangle solar-induced chlorophyll fluorescence observation and angular normalization for assessing crop productivity. Journal of Geophysical Research-Biogeosciences, 126(5): e2020JG006082, DOI: 10.1029/2020JG006082.
150. Lu HB, Li SH, Ma MN, Bastrikov V, Chen XZ, Ciais P, Dai YJ, Ito A, Ju WM, Lienert S, Lombardozzi D, Lu XJ, Maignan F, Nakhavali M, Quine T, Schindlbacher A, Wang J, Wang YP, Warlind D, Zhang SP, and Yuan WP*, 2021. Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models. Environmental Research Letters, 16(5): 054048, DOI: 10.1088/1748-9326/abf526.
149. Huang XY, Xu ZH, Wang XP, Yang X, Ju WM*, Hu XY, Li K, and Chen YZ, 2021.Spectral characteristics of Moso Bamboo leaves damaged by Pantana Phyllostachysae Chao and monitoring of pest rating. Spectroscopy and Spectral Analysis, 41(4): 1253-1259.
148. Wang J*, Wang MR, Kim JS, Joiner J, Zeng N, Jiang F, Wang HM, He W, Wu MS, Chen TX, and Ju WM, andChen JM, 2021. Modulation of land photosynthesis by the Indian ocean dipole: satellite-based observations and CMIP6 future projections. Earth Future, 9(4): e2020EF001942, DOI: 10.1029/2020EF001942.
147. He W, Ju WM*, Jiang F*, Parazoo N, Gentine P, Wu XC, Zhang CH, Zhu JW, Viovy N, Jain AK, Sitch S, and Friedlingstein P, 2021.Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America. Agricultural and Forest Meteorology, 298: 108292, DOI: 10.1016/j.agrformet.2020.108292.
146. Zhang YG*, Zhang Q, Liu LY, Zhang YJ, Wang SQ, Ju WM, Zhou GS, Zhou L, Tang JW, Zhu XD, Wang F, Huang Y, Zhang ZY, Qiu B, Zhang XK, Wang SH, Huang CP, Tang XG, and Zhang JS, 2021. ChinaSpec: A network for long-term ground-based measurements of solar-induced fluorescence in China. Journal of Geophysical Research-Biogeosciences, 126(3): e2020JG006042, DOI: 10.1029/2020JG006042.
145. Jiang F*, Wang HM, Chen J, Ju WM, Tian XJ, Feng SZ, Li GC, Chen ZQ, Zhang SP, Lu XH, Liu J, Wang HK, Wang J, He W, and Wu MS, 2021. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System. Atmospheric Chemistry and Physics, 21(3): 1963-1985.
144. Wang SH, Zhang YG*, Ju WM, Qiu B, and Zhang ZY, 2021. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Science of the Total Environment, 755(2): 142569, DOI: 10.1016/j.scitotenv.2020.142569.
143. Shan N, Zhang YG*, Chen JM, and Ju WM, Migliavacca M, Penuelas J, Yang X, Zhang ZY, Nelson JA, and Goulas Y, 2021. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 252:112134, DOI: 10.1016/j.rse.2020.112134.
142. Zhang YG*, Migliavacca M, Penuelas J, and Ju WM, 2021. Advances in hyperspectral remote sensing of vegetation traits and functions. Remote Sensing of Environment, 252: 112121, DOI: 10.1016/j.rse.2020.112121.
2020
141. Wang SH, Zhang YG*, Ju WM, Porcar-Castell A, Ye SS, Zhang ZY, Brummer C, Urbaniak M, Mammarella I, Juszczak R, and Boersma KF, 2020. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 295: 108195, DOI: 10.1016/j.agrformet.2020.108195.
140. Wang SH, Zhang YG*, Ju WM, Chen JM, Ciais P, Cescatti A, Sardans J, Janssens IA, Wu MS, Berry JA, Campbell E, Fernández-Martínez M, Alkama R, Sitch S, Friedlingstein P, Smith WK, Yuan WP, He W, Lombardozzi D, Kautz M, Zhu D, Lienert S, Kato E, Poulter B, Sanders TGM, Krüger I,Wang R, Zeng N, Tian HQ, Vuichard N, Jain AK, Wiltshire A, Haverd V, Goll DS, and Peñuelas S, 2020. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370, 1295–1300.
139. Wang J*, Liu ZQ, Zeng N, Jiang F, Wang HM, and Ju, WM, 2020, Spaceborne detection of XCO2 enhancement induced by Australian mega-bushfires. Environmental Research Letters, 15(12): 124069, DOI: 10.1088/1748-9326/abc846.
138. Zheng Y, Shen RQ, Wang YW, Li XQ, Liu, SG, Liang SL, Chen JM, Ju WM, Zhang L, and Yuan WP*, 2020. Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth System Science Data, 12(4): 2725-2746.
137. Feng SZ, Jiang F*, Wang HM, Wang HK, Ju WM, Shen Y, Zheng YH, Wu Z, and Ding AJ, 2020. NOx emission changes over China during the COVID-19 epidemic inferred from surface NO2 observations. Geophysical Research Letters, 47(9): e2020GL090080, DOI: 10.1029/2020GL090080.
136. Zhou YL, Wu XC, Ju WM*, Zhang LM, Chen Z, He W, Liu YB, and Shen Y, 2020.Modeling the effects of global and diffuse radiation on terrestrial gross primary productivity in China based on a two-leaf light use efficiency model. Remote Sensing, 12(20), DOI: 10.3390/rs12203355.
135. Lu XH, Ju WM*, Li J, Croft H, Chen JM, Luo YQ, Yu H, and Hu HJ, 2020. Maximum carboxylation rate estimation with chlorophyll content as a proxy of rubisco content. Journal of Geophysical Research-Biogeosciences, 125, e2020JG005748.
134. Wang XP, Chen JM*, and Ju WM, 2020.Photochemical reflectance index (PRI) can be used to improve the relationship between gross primary productivity (GPP) and sun-induced chlorophyll fluorescence (SIF). Remote Sensing of Environment, 246: 111888, DOI: 10.1016/j.rse.2020.111888
133. Wu BX, Zheng G*, and Ju WM, 2020. The local median filtering method for correcting the laser return intensity information from discrete airborne laser scanning data. Remote Sensing, DOI: 10.3390/rs12101681.
132. Feng SZ, Jiang F*, Wu Z, Wang HM, Ju WM, and Wang HK, 2020. CO emissions inferred from surface CO observations over China in December 2013 and 2017. Journal of Geophysical Research-Atmospheres, DOI: 10.1029/2019JD031808.
131. Chen YZ*, Chen LY, Cheng Y, Ju WM, Chen HYH, and Ruan HH*, 2020.Afforestation promotes the enhancement of forest LAI and NPP in China. Forest Ecology and Management, 462, DOI: 10.1016/j.foreco.2020.117990.
130. Gao Y, Wang SH, Guan KY, Wolanin A, You LZ, Ju WM, and Zhang YG*, 2020.The ability of sun-Induced chlorophyll fluorescence From OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA. Remote Sensing, 12(7),DOI: 10.3390/rs12071111.
129. Zhang ZY, Zhang YG*, Porcar-Castell A, Joiner J, Guanter L, Yang X, Migliavacca M, and Ju WM, Sun ZG, and Chen SP, 2020. Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, DOI: 10.1016/j.rse.2020.111722.2
128. Wang SQ,Li Y*, Ju WM ,Chen B, Chen JH, Croft H, Mickler RA, and Yang FT, 2020. Estimation of leaf Photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. Journal of Geophysical Research-Biogeoscienes, 125(2):DOI: 10.1029/2019JG005020.
2019
127. Zeng K, Zheng G*, Ma LX, Ju WM, and Pang Y, 2019. Modelling three-dimensional spatiotemporal distributions of forest photosynthetically active radiation using UAV-Based lidar data. Remote Sensing, 11(23): 2806, DOI: 10.3390/rs11232806.
126. Dai SP, Ju WM*, Zhang YG, He QN, Song L, and Li J, 2019. Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. Science of the Total Environment,690: 973-990.
125. Qiu B, Chen JM, Ju WM, Zhang Q, and Zhang YG*, 2019. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sensing of Environment, 233: DOI: 10.1016/j.rse.2019.111373.
124. Zhu SH, Li GF, Shao H, Ju WM*, and Lv NN, 2019. The response of carbon stocks of drylands in Central Asia to changes of CO2 and climate during past 35 years. Science of the Total Environment, 687: 330-340.
123. Wang HM, Jiang F*, Wang J, Ju WM, and Chen JM, 2019.Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmosphere and Chemistry Physics, 19:12067–12082.
122. Chen JM, Ju WM*, Ciais P, Viovy N, Liu RG, Liu Y, and Lu XH, 2019. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10: 4259, doi.org/10.1038/s41467-019-12257-8.
121. Huang Q, Ju WM*, Zhang FY, and Zhang Q, 2019. Roles of climate change and increasing CO2 in driving changes of net primary productivity in China simulated using a dynamic global vegetation model. Sustainability, 11, 4176, doi:10.3390/su11154176.
120. Qiu F, Chen JM, Croft H, Li Jing, Zhang Q, Zhang YG, and Ju WM*, 2019. Retrieving leaf chlorophyll content by incorporating variable leaf surface reflectance in the PROSPECT model. Remote Sensing, 11, 1572; doi:10.3390/rs11131572.
119. Wang SH, Ju WM, J Peñuelas, Cescatti A, Zhou YY, Fu YS, Huete A, Liu M, and Zhang YG*, 2019. Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nature Ecology and Evolution, https://doi.org/10.1038/s41559-019-0931-1.
118. Lu XH, Ju WM*, Jiang H, Zhanga XY, Liu JX, and Sherb J, 2019. Effects of nitrogen deposition on water use efficiency of global terrestrial ecosystems simulated using the IBIS model. Ecological Indictors, 101: 954-962.
117. He HL, Wang SQ, Zhang L,Wang JB, Ren XL, Zhou L, Piao SL, Yan H, Ju WM, Gu, FX, Yu SY, Yang YH, Wang MM, Niu ZG, Ge R, Yan HM, Huang M, Zhou GY, Bai YF, Xie ZQ, Tang ZY, Wu BF, Zhang LM, He NP, Wang QF, and Yu GR*, 2019. Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. National Science Review, 6(3): 505-514.
116. Shan N, Ju WM, Migliavacca M, Martini D, Guanter L, Chen JM, Goulas Y, and Zhang YG*, 2019. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 268: 189-201.
115. Li J, Ju WM*, He W, Wang HM, Zhou YL, and Xu MZ, 2019. An algorithm differentiating sunlit and shaded leaves for improving canopy conductance and evapotranspiration estimates. Journal of Geophysical Research: Biogeosciences, 124, 807–824. https://doi.org/10.1029/2018JG004675. (2019-06-14)
114. Chen YZ*, Ju WM, Mu SJ, Fei XR, Cheng Y, Propastin P, Zhou W, Liao CJ, Chen LX, Tang RJ, Qi JG, Li JL, and Ruan HH, 2019. Explicit representation of grazing activity in a diagnostic terrestrial model: a data-process combined scheme. Journal of Advances in Modeling Earth Systems, 11, 957–978. https://doi.org/10.1029/ 2018MS001352.
113. Xu MZ, Liu RG*, Chen JM, Liu R, Shang R, Ju WM, Wu CY, and Huang WJ, 2019. Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224, 60-73.
112. Zhang L,Ren XL,Wang JB,He HL*,Wang SQ, Wang MM, Piao SL, Yan H, Ju WM, Gu FX, Zhou L, Niu ZG, Ge R, Li YY, Lv Y, Yan HM, Huang M, and Yu GR, 2019. Interannual variability of terrestrial net ecosystem productivity over China: regional contributions and climate attribution. Environmental Reseacrh Letters, 14(1): 014003, DOI: 10.1088/1748-9326/aaec95.
2018
111.Wu CY*, Wang XY, Wang HJ*, Ciais P, Peñuelas J, Myneni RB,Desai AR, Gough CM, Gonsamo A, Black AT, Jassal RS, Ju WM, Yuan WP, Fu YS, Shen MG, Li SH, Liu RG, Chen JM, and Ge QS*, 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, doi.org/10.1038/s41558-018-0346-z.
110. Luo XZ*, Keenan TF, Fisher JB, Jimenez-Munoz JC, Chen, JM, Jiang CY, Ju WM, Perakalapudi NV,Ryu Y, Tadic JM, 2018. The impact of the 2015/2016 El Nino on global photosynthesis using satellite remote sensing. Philosophical Transactions of the Royal Society B-Biological Sciensces, 373(1760),20170409.,http://dx.doi.org/10.1098/rstb.2017.0409
109. Zhang CH, Ju WM, Chen JM, Fang MH, Wu MQ, Chang XL, Wang T, and Wang XQ, 2018. Sustained biomass carbon sequestration by China's forests from 2010 to 2050. Forests, 9(11): 689,DOI: 10.3390/f9110689.
108.Wang SH, Zhang YG*, Hakkarainen J, Ju WM, Liu YX*, Jiang F, and He W, 2018. Distinguishing anthropogenic CO2 emissions from different energy intensive industrial sources using OCO-2 observations: A case study in Northern China. Journal of Geophysical Research-atmosphere, 123(17): 9462-9473.
107. Song L, Guanter L, Guang KY, You LZ, Huete A, Ju WM, and Zhang YG*, 2018. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Chang Biology, 24(9): 4023-4037.
106. Wang J, Zeng N*, Wang MR, Jiang F, Chen JM, Friedlingstein P, Jain AK, Jiang ZQ, Ju WM, Lienert S, Nabel J, Sitch S, Viovy N, Wang HM, and Wiltshire AJ, 2018.Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Ninos. Atmospheric Chemistry and Physics, 18(14): 10333-10345.
105. He W, van der Velde IR, Andrews AE, Sweeney C, Miller J, Tans P, van der Laan-Luijkx IT, Nehrkorn T, Mountain M, Ju WM, Peters W, and Chen HL*, 2018. CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations. Geoscientifc Model Development, 11(8): 3515-3536.
104. He W, Ju WM*, Schwalm CR, Sippel S, Wu XC, He QN, Zhang CH, Li J, Stich S, Viovy, N, Friedlingstein P, and Jain AK, 2018. Large-scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over North America in 2011 and 2012. Journal of Physical Reseach-Biogeosciences,123, 10.1029/2018JG004520.
103. Zhou L,Wang SQ*, Chi YG, Ju WM, Huang K, Mickler RA, Wang MM, and Yu QZ. Changes in the carbon and water fluxes of subtropical forest ecosystems in south-western China related to drought. Water, 10(7): 821,DOI: 10.3390/w10070821.
102. Chen YZ, Tao YW, Cheng Y, Ju WM, Ye JY, Hickler T, Liao CJ, Feng L, and Ruan HH*, 2018. Great uncertainties in modeling grazing impact on carbon sequestration: a multi-model inter-comparison in temperate Eurasian Steppe. Environmental Research Letters, 13(7): 075005, DOI: 10.1088/1748-9326/aacc75.
101. Ma LX, Zheng G*, Wang XF, Li SM, Lin Y, and Ju WM, 2018. Retrieving forest canopy clumping index using terrestrial laser scanning data. Remote Sensing of Environment, 210: 452-472.
100. Qiu F, Chen JM, Ju WM*, Wang J, Zhan Q, and Fang MH, 2018, Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves. IEEE Transactions on Geosciences and Remote Sensing, 99, 1-19.
99. Wang J, Wu CY*, Zhang CH, Ju WM, Wang XY, Chen Z, and Fang B, 2018.Improved modeling of gross primary productivity (GPP) by better representation of plant phenological indicators from remote sensing using a process model. Ecological Indicators, 88: 332-340.
98. Jiang L, Zhan WF*, Voogt J, Zhao LM, Gao L, Huang F, Cai Z, and Ju WM, 2018. Remote estimation of complete urban surface temperature using only directional radiometric temperatures. Building and Environment, 135: 224-236.
97. Lai JM, Zhan WF*, Huang F, Quan JL, Hu LQ, Gao L, and Ju WM, 2018. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products. ISPRS Journal of Photogrammetry and Remote Sensing, 139: 212-227.
96. Liu YB, Xiao JF*, Ju WM, Zhu GL, Wu XC, Fan WL, Li DQ, and Zhou YL, 2018. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 206: 174-188.
95. Zan M, Zhou YL*, Ju WM, Zhang YG, Zhan LM, and Liu YB, 2018. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data. Science of the Total Environment, 613-614: 977-989.
2017
94. Huang F, Zhan WF*, Wang ZH, Wang KC, Chen JM, Liu YX, Lai JM, and Ju WM, 2017. Positive or Negative? Urbanization-induced variations in diurnal skin-surface temperature range detected using satellite data. Journal of Geophysical Research-Atmospheres,122(24): 13229-13244.
93. Chen ZQ, Chen JM*, Zhang SP, Zheng XG, Ju WM, Mo G, and LU XL, 2017. Optimization of terrestrial ecosystem model parameters using atmospheric CO2 concentration data with the global carbon assimilation system (GCAS). Journal of Geophysical Research: Biogeosciences,122, 3218–3237.
92. Chen YZ, Ju WM, Groisman P, Li JL*, Propastin P, Xu X, Zhou W, and Ruan HH, 2017. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe. Environmental Research Letters, 12: 11505.
91. Chen YZ, Li JL*, Ju WM, Ruan HH, Qin ZH, Huang YY, Jeeiani N, Padarian J, and Propastin P, 2017. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. 2017, PLoS ONE 12(7): e0179875.
90. Fang MH, Ju WM*, Zhan WF*, Chen T, Qiu F, and Wang J, 2017. A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves. Remote Sensing of Environemnt,196: 13-27.
89. Zhan Q, Chen JM, Ju WM*, Wang HM, Qiu F, Yang FT, Fan WL, Huang Q, Wang YP, Feng YK, Wang XJ, and Zhang FM, 2017. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves. Remote Sensing of Environment, 194:1-15.
88. Sun SL*,Chen HS, Ju WM, Wang GJ, Sun G,Huang J, Ma HD, Gao CJ, Hua WJ, and Yan GX, 2017. On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China. Climate Dynamics, 48(11): 3779-3797.
87. Wang BJ, and Ju WM*, 2017.Limitations and improvements of the leaf optical properties model leaf incorporating biochemistry exhibiting reflectance and transmittance yields (LIBERTY). Remote Sensing, 9, 431; doi:10.3390/rs9050431.
86 Zhou YL*, Hilker T, Ju WM, Coops NC, Black TA, Chen JM, and Wu XC, 2017. Modeling gross primary production for sunlit and shaded canopies across an evergreen and a deciduous site in Canada. IEEE Transactions on Geosciences and Remote Sensing, 55(4):1859-1873.
85. Wang J, Chen JM, Ju WM*, Qiu F, Zhang Q, Fang MH, and Chen FG, 2017. Limited effects of water absorption on reducing the accuracy of leaf nitrogen estimation. Remote Sensing, 9, 291; doi:10.3390/rs9030291.
84. Sun SL*, Chen HS*, Sun G, Ju WM, Wang GJ, Li X, Yan GX, Gao CJ, Huang J, and Zhang, FM, 2017.Attributing the changes in reference evapotranspiration in southwestern China using a new separation method. Journal of Hydrometeorology, 18(3): 777-798.
83. Gao L, Zhan WF, Huang F, Quan JL, Lu XM, Wang F, Ju WM, and Zhou J, 2017. Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature. IEEE Transactions on Geosciences and Remote Sensing, 55(1):477-490.
2016
82. Huang F, Zhang WF*, Voogt J, Hu Leiqiu, Wang ZH, Quan JL, Ju WM, and Gao Z, 2016. Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. Remote Sensing of Environemnt, 186:1-12.
81. Zhan WF*, Huang F, Quan JL, Zhu XL, Gao L, Zhou J, and Ju WM, 2016. Disaggregation of remotely sensed land surface temperature: A new dynamic methodology. Journal of Geophysical Research-Atmospheres, 121, doi:10.1002/2016JD024891.
80. Liu YB, Xiao JF*, Ju WM, Xu K, Zhou YL, and Zhao YT, 2016. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environmental Research Letters, 11, doi:10.1088/1748-9326/11/9/094010.
79. Shi XL*, Nie SP, Ju WM, and Yu L, 2016. Climate effects of the globalLand30 land cover dataset on the Beijing center climate model simulations. Science China-Earth Sciences, 59: 1754-1764.
78. Zhou YL, Wu XC, Ju WM*, Chen JM, Wang SQ, Wang HM, Yunan WP, Black TA, Jassal R, Ibrom A, Han SJ, Yan JH, Margolis H, Roupsard O, Li YN, Zhao FH, Kiely G, Starr G, Pavelka M, Montagnani L, Wohlfahrt G, D’Odorico P, Cook D, Arain MA, Bonal D, Beringer J, Blanken PD, Loubet B, Leclerc MY, Matteucci G, Nagy Z, Olejnik J, Paw KT, Varlagin A, 2016. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites. Journal of Geophysical Research-Biogeosciences, 121: 1045–1072.
77. Jiang F*, Chen JM , Zhou LX, Ju WM, Zhang HF, Machida T, Ciais P , Peters W,Wang HM, and Chen BZ, 2016. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Scientific Reports, 6: 22130, DOI: 10.1038/srep22130.
2015
76. Zhang Q, Ju WM, Chen JM*, Wang HM, Yang FT, Fan WL, Huang Q, Zheng T, Feng YK, Zhou YL, He MZ, Qiu F, Wang, XJ, Wang J, Zhang FM, and Chou SR, 2015. Ability of the photochemical reflectance index to track light use efficiency for a sub-tropical planted coniferous forest. Remote Sensing, 7(12): 16938-16962.
75. Zhang CH, Ju WM*, Chen JM, Wang XQ, Yang L, and Zheng G, 2015. Disturbance- induced reduction of biomass carbon sinks of China's forests in recent years. Environmental Research Letters, 10(11), Doi: 10.1088/1748-9326/10/11/114021.
74. Chen ZQ*, Chen JM, Zheng XG, Jiang F, Qin J, Zhang SP, Yuan WP, Ju WM, and Mo G, 2015. Optimizing photosynthetic and respiratory parameters based on the seasonal variation pattern in regional net ecosystem productivity obtained from atmospheric inversion. Science Bulletin, 60(22): 1954-1961.
73. Li DQ, Ju WM*, Lu DS, Zhou YL, and Wang HM. Impact of estimated solar radiation on gross primary productivity simulation in subtropical plantation in southeast China. Solar Energy, 2015,120: 175-186.
72. Liu YB, Xiao JF, Ju WM*, Zhou YL, Wang SQ, and Wu XC, 2015. Water use efficiency of China's terrestrial ecosystems and responses to drought. Scientific Reports, 5: 13799, DOI: 10.1038/srep13799.
71. Fang MH, Ju WM*, Liu XN, Yu ZF, and Qiu F, 2015. Surface chlorophyll-a concentration spatio-temporal variations in the Northern South China sea detected using MODIS data. Terrestrial, atmospheric and Oceanic Sciences, 26(3): 319-329.
70. Zhou YL, Xing BL, and Ju WM*, 2015. Assessing the impact of urban sprawl on net primary productivity of terrestrial ecosystems using a process-based model-A case study in Nanjing, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5): 1-14.
69. Zhang FM*, Chen JM, Pan YD, Birdsey RA, Shen SH, Ju WM, and Dugan AJ, 2015. Impacts of in adequate historical disturbance data in the early twentieth century on modeling recent carbon dynamics (1951-2010) in conterminous US forests. Journal of Geophysical Research-Biogeosciences, 120(3):549- 569, DOI:10.1002/2014JG002798.
68.Wu XC, Ju WM*, Zhou YL, He MZ, Law BE, Black TA, Margolis HA, Cescatti A, Gu LH, Montagnani L, Noormets A, Griffis TJ, Pilegaard K, Varlagin A, Valentini R, Blanken PD, Wang SQ, Wang HM, Han SJ, Yan JH, Li YN, Zhou BB, and Liu YB, 2015. Performance of linear and nonlinear two-leaf light use efficiency models at different temporal scales. Remote Sensing,7(3): 2238-2278. (2015-03-01)
67. Fang MH and Ju WM*, 2015. An inversion model for remote sensing of leaf water content based on the leaf optical property. Spectroscopy and Spectral Analysis, 35(1): 167-171, DOI :10.3964/3.issn.1000-0593(2015)01-0167-05.
2014
66. Huang F, Zhan WF*, and Ju WM, and Wang ZH, 2014. Improved reconstruction of soil thermal field using two-depth measurements of soil temperature. Journal of Hydrology, 519: 711-719, DOI: 10.1016/j.jhydrol.2014.08.014.
65. Zhan WF*, Ju WM, Hai SP, Ferguson G, Quan JL, Tang CS, Guo Z, and Kong FH, 2014. Satellite-derived subsurface urban heat island. Environmental Science &Technology, 48(20):12134-12140, DOI: 10.1021/es50211851.
64. Fan WL*, Chen JM, Ju WM, and Zhu GL, 2014. GOST: A geometric-optical model for sloping terrains. IEEE Transaction on geosciences and remote sensing, 52(9): 5469-5482.
63. Fan WL*, Chen JM, Ju WM, and Nesbitt N, 2014. Hybrid geometric optical -radiative transfer model suitable foe forests on slopes. IEEE Transaction on geosciences and remote sensing, 52(9): 5579-5586.
62. Zhu GL, Ju WM*, Chen JM, and Liu YB, 2014. A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval. PLOS ONE, 9(7): e102560. doi:10.1371/journal.pone.0102560.
61. Huang F, Zhan WF*, Duan SB, Ju WM, and Quan JL, 2014. A generic framework for modeling diurnal land surface temperatures with remotely sensed thermal observations under clear sky. Remote Sensing of Environment, 150: 140-151, DOI: 10.1016/j.rse.2014.04.022.
60. Sun SL, Chen HS*, Ju WM, Hua WJ, Yu M, and Yin YX, 2014. Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-model ensemble and SWAT model. International Journal of Climatology, 34(9): 2972- 2987, DOI: 10.1002/joc.3890.
59. Sun SL, Chen HS*, Ju WM, Yu M, Hua WJ, and Yin Y, 2014. On the attribution of the changing hydrological cycle in Poyang Lake Basin, China. Journal of Hydrology, 514: 214-225.
58. Zhan CH, Ju WM*, Chen JM, Li DQ, Wang XC, Fan WY, Li MS, and Zan M, 2014. Mapping forest stand age in China using remotely sensed forest height and observation data. Journal of Geophysical Research-Biogeosciences, 119:1163-1179.
57. Zhang FM*, Ju WM, Shen SH, Wang SQ, Yu GR, and Han SJ. 2014. How recent climate change influence water use efficiency in East Asia. Theoretical and Applied Climatology, 116(1-2): 359-370.
56. Wu CY*, Hember RA, Chen JM, Kurz WA, Price DT, Boisvenue C, Gonsamo A., and Ju WM, 2014. Accelerating forest growth enhancement due to climate and atmospheric changes in British Colombia, Canada over 1956-2001. Scientific Reports, 4: 4461, DOI:10.1038/srep04461.
55 Li DQ, Ju WM*, Fan WY, and Gu ZJ, 2014. Estimating the age of deciduous forests in northeast China with Enhanced Thematic Mapper Plus data acquired in different phonological seasons. Journal of Applied Remote Sensing, 8: 083670,1-20.
54. Zhan WF*, Zhou J, Ju WM, Li MC, Sandholt I, Voogt J, and Yu C, 2014. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model. Remote Sensing of Environment, 143: 1-14.
53. Jiang F, Wang HM*, Chen JM, Machida T, Zhou LX, Ju WM, Matsueda H, and Sawa Y, 2014. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements. Atmospheric Chemistry and Physics, 14(18): 10133-10144, DOI: 10.5194/acp-14-10133-2014.
52. Zhou YL, Ju WM*, Sun XM, Hu ZM, Han SJ, Black TA, Jassal RS, and Wu XC, 2014. Close relationship between spectral vegetation indices and V-cmax in deciduous and mixed forests. Tellus B, 66: DOI: 10.3402/tellusb.v66.23279.
51. Li MW, Wang YX*, and Ju WM, 2014. Effects of a remotely sensed land cover dataset with high spatial resolution on the simulation of secondary air pollutants over China using the nested-grid GEOS-chemical transport model. Advances in Atmospheric Sciences, 2014, 31(1): 179-187, DOI: 10.1007/s00376-013-2290-1.
50. Liu YB., Zhou YL, Ju WM*, Wu XC, He MZ, and Zhu GL, 2014. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11: 2583-2599.
2013
49. Mu SJ, Zhou SX, Chen YZ, Li JL*, and Ju WM, and Odeh I, 2013.Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolia grassland, China. Global and Planetary Chang,108: 29-41.
48. Fan WL, Ju WM*, and Gu ZJ, 2013. Method for reconstructing the pixel missing region on remote sensing images. Journal of Applied Remote Sensing, 073536-1.
47. Zhang CH, Ju WM*, Chen JM, Zan M, Li DQ, Zhou YL, and Wang XQ, 2013. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Climatic Chang, 118: 933-948.
46. He MZ, Ju WM*, Zhou YL, Chen JM, He HL, Wang SQ, Wang HM, Guan DX, Yan JH, Li YN, Hao YB, and Zhao FH, 2013. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agricultural and Forest Meteorology ,173:28-39.
45. Gu ZJ, Ju WM*, Li L, Li DQ, Liu YB, and Fan WL, 2013. Using vegetation indices and texture measures to estimate vegetation fractional coverage (VFC) of planted and natural forests in Nanjing City, China. Advances in Space Research, 51:1186-1194.
44. Sun SL, Chen HS*, Ju WM, Son J, Zhan H,Sun J, and Fang YJ, 2013. Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China. Theoretical and Applied Climatology, 112:169-183.
43. Liu YB, Ju WM*, He HL, Wang SQ, Sun R, and Zhang YD, 2013. Changes of net primary productivity in China during recent 11 years using an ecological model driven by MODIS data. Frontier of Earth Sciences, DOI 10.1007/s11707-012-0348-5.
42. Zhang Z, Jiang H*, Liu JX, Ju WM, and Zhang XY, 2013. Effect of heterogeneous atmospheric CO2 on simulated global carbon budget. Global and Planetary Change, 101:33-51.
41.He MZ, Zhou YL, Ju WM*, Chen JM, Zhang L, Wang SQ, Saigusa N, Hirata R, Murayama S, and Liu YB, 2013. Evaluation and improvement of MODIS gross primary productivity in typical forest ecosystems of East Asia based on eddy covariance measurements. Journal of Forest Research, 18: 31-40.
40. Liu YB, Zhou YL*, Ju WM, Chen JM, Wang SQ, He HL, Wang HM, Guan DX, Zhao FH, Li YL, and Hao YB, 2013. Evapotranspiration and water yield over China’s landmass from 2000 to 2010. Hydrology and Earth System Science, 13, 17:4957–4980.
39. Chen JM*, Chen X, and Ju WM, 2013. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity. Biogeosciences, 10:4879-4896.
2012
38. Liu Y, Liu RG*, Chen JM, and Ju WM, 2012. Expanding MISR LAI products to high temporal resolution with MODIS observations. IEEE Transactions on Geosciences and Remote Sensing, 50(10Part1): 3915-3927.
37. Gu ZJ, Ju WM*, Liu YB, Li DQ, and Fan WL, 2012. Applicability of spectral and spatial information from IKONOS-2 imagery in retrieving leaf area index of forests in the urban area of Nanjing, China. Journal of Applied Remote Sensing, 6,063556.
36. Zhang FM*, Ju WM, Shen SH, Wang SQ, Yu GR, and Han SJ, 2012. Variations of terrestrial net primary productivity in East Asia. Terrestrial Atmospheric and Oceanic Sciences, 23(4): 425-437.
35. Liu YB, Ju WM*, Chen JM, Zhu GL, Xing BL, and Zhu JF, 2012. Spatial and temporal variations of forest LAI in China during 2000-2010. Chinese Science Bulletin, 57(22): 2846-2856.
34. Zhang FM*, Chen JM, Pan YD, Birdsey RA, Shen SH, Ju WM, and He LM, 2012. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research-Biogeosciences, 117: DOI: 10.1029/2011jg001930.
33. Zhu GL, Ju WM*, Chen JM, Gong P, Xing BL, and Zhu JF, 2012. Foliage clumping index over China's landmass retrieved from the MODIS BRDF parameters product. IEEE Transactions on Geosciences and Remote Sensing, 50(6): 2122-2137.
32. Zhou YL, Ju WM*, Sun XM, Wen XF, and Guan DX, 2012. Significant decrease of uncertainties on sensible heat flux simulation using temporally variable aerodynamic roughness in two typical forest ecosystems of China. Journal of Applied Meteorology, 51(6): 1099-1110.
31. Zhou YL, Sun XM*, Ju WM, Wen XF, and Guan DX, 2012. Seasonal, diurnal and wind-direction-dependent variations of the aerodynamic roughness length in two typical forest ecosystems of China. Terrestrial Atmospheric and Oceanic Sciences, 23(2):181-191.
30. Sun XL, Chen HS*, Ju WM, Song J, Li JJ, Ren YJ, and Sun J, 2012. Past and future changes of streamflow in Poyang Lake Basin, Southeastern China. Hydrological Earth System Sciences, 16: 2005-2020.
2011
29. Wang SQ, Zhou L, Chen JM, Ju WM, Feng XF, and Wu WX, 2011.Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management, 92: 1651-1662.
2010
28. Ma RH*, Duan HT, Hu CM, Feng XZ, Li AN, and Ju WM, Jiang JH, and Yang GS, 2010. A half-dentury of changes in China’s lakes: Global warning or human influences? Geophysical Research Letters, 37: L24106, doi: 10.1029/2010GL045514.
27. Ju WM*, Chen JM, Black TA, Barr AG, and McCaughey H. 2010. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada’s forests and wetlands. Tellus 62B: 140-159.
26. Ju WM*, Wang SQ, Yu GR, Zhou YL, and Wang HM, 2010. Modelling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences, 7: 845-857.
25. Ju WM*, Gao P, Zhou YL, Chen JM, Chen S, and Li XF, 2010. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of Jiangsu Province, China. International Journal of Remote Sensing, 31(6):1573-1587.
24. Ju WM*, Gao P, Wang J, and Zhang XH, 2010. Combing an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate. Agricultural Water Management, 97: 1221-1231.
23. Wang J*, Chen JM, Ju WM, and Li MC, 2010. IA-SDSS: A-GIS-based land use decision support system with consideration of carbon sequestration. Environmental Modelling and Software ,25: 539-553.
2009
22. Govind A*, Chen JM, and Ju WM. 2009.Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem. Journal of Geophyscial Research,114: G02006, doi:10.1029/2008JG000728.
21. Govind A*, Chen JM, Margolis H, Ju WM, Sonnentag O, and Giasson MA, 2009.A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America. Journal of Hydrology, 367(3-4): 200-216.
2008
20. Mo XG*, Chen JM, Ju WM, and Black TA, 2008. Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filer. Ecological Modelling, 217: 157-173.
19. Chen JM*, Huang S, Ju WM, Goumont-Guay D, and Black TA. 2008. Daily heterotrophic respiration model considering the non-linear effect of diurnal temperature variability. Journal of Geophysical Research-Biogeosciences, 114: G01022, doi:10.1029/2008JG000834, 2009.
18. Sonnentag O*, Chen JM, Ju WM, and A Govind, 2008. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography. Journal of Geophysical Research, 113: G02005, doi: 10.1029/2007JG000605.
17. Ju WM* and Chen JM, 2008. Simulating the effects of past changes in climate, atmospheric composition, and fire disturbance on soil carbon in Canada’s forests and wetlands. Global biogeochemical Cycles, 22, GB3010, doi:10.1029/2007GB002935.
2007
16. Chen B*,Chen JM, and Ju WM , 2007. Remote sensing-based ecosystem-atmosphere simulation scheme (EASS)-Model formulation and test with multiple-year data.Ecological Modell ing, 2007, 209: 277-300.
15. Wang SQ*, Chen JM, Ju WM, Feng XF, Chen MZ, Chen PQ, and Yu GR., 2007. Carbon sinks and sources of China’s forests during 1901-2001. Journal of Environmental Management, 85: 524-537.
14. Ju WM*, Chen JM, Harvey D, and Wang S, 2007. Future carbon balance of China’s forests under climate change and increasing CO2. Journal of Environmental Management, 85: 538-562.
13. Feng XF*, Liu GH, Chen JM, Chen MZ, Liu J, Ju WM, Sun R, Zhou W, 2007. Simulating net primary productivity of terrestrial ecosystems in China. Journal of Environmental Management, 85: 562-575.
12. Chen XF, Chen JM*, An SQ, and Ju WM, 2007. Effects of topography on simulating net primary productivity at landscape scale. Journal of Environmental Management, 85: 585-596 .
11. Zheng G*, Chen JM, Tian QJ, Ju WM, and Xia XQ, 2007. Combing remote sensing imagery and forest age inventory for biomass mapping, Journal of Environmental Management, 85: 616-623.
10. Yang LX, Pan JJ*, Shao YH, Chen JM, Ju WM, Shi XZ, and Yuan SF, 2007. Soil organic decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management, 85: 690-695.7.
9. Shao YH, Pan JJ*, Yang LX, Chen JM, Ju WM, and Shi XZ, 2007. Validation of soil organic carbon density using the InTEC model. Journal of Environmental Management, 85: 696-701).
8. Caldwell I, Maclaren V*, Chen JM, Ju WM, Zhou S, and Yin Y, 2007. An integrated assessment model of carbon sequestration benefits: a case study of Liping County, China. Journal of Environmental Management, 85: 757-773.
2006
7. Ju WM*, Chen JM, Black TA, Barr AG, Liu J, and Chen B, 2006. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140: 136-151.
6. Ju WM*, Chen , JMBlack TA, Barr AG, McCaughey H, and Roulet NT, 2006. Hydrological effects on carbon cycles of Canada’s forests and wetlands. Tellus 58B: 16-30.
2005
5. Chen JM*, Chen X, Ju WM , and Geng, X, 2005. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305: 15-39.
4. Wang QF, Niu D, Yu GR*, Ren CY, Wen XF, Chen JM, and Ju WM, 2005. Simulating the exchanges of carbon dioxide, water vapor and heat over Changbai Mountains temperate broadleaved Korean pine mixed forest ecosystem. Science in China Series, D48: 148-159 Supp l.1. (2005-04-01)
3 Ju WM* and Chen JM, 2005. Distribution of soil carbon stocks in Canada’s forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes, 19: 77-94.
2003
2. Chen JM*, Ju WM, Cihlar J, Price D, Liu J, Chen WJ, Pan J, Blcak A and Barr A, 2003, Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus 55B: 622-641.
2000
1. Jin L*, Ju WM, and Miao QL, 2000. Study on ANN-based multi-step prediction model of short-term climatic variation. Advances in Atmospheric Sciences 17:157-164.
14. Liu YB, Ju WM, He MZ, Zhu GL, Zhou YL, 2012. Decrease of net primary productivity in China's terrestrial ecosystems caused by severe droughts in 2009. Proceedings of the 2nd International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2012, 59-63.
13. Xu JH, Ju WM, Hu ZW, 2012. Object-oriented land cover classification of HJ-1B CCD image through multiple classifier fusion. Proceedings –the 20th International Conference on Geoinformatics, Geoinformatics 2012.
12. Zhu YJ,Ju WM, Zhou YL.2011.Impacts of ice storm on forest gross primary productivity detected using multi-source remote sensing data.Proceedings of Geoinformatics 2011.
11. Fang WL,Chen JM,Ju WM.2011. A pixel missing patch inpainting method for remote sensing image.Proceedings of Geoinformatics 2011.
10. Li DQ,Li XF,Ju WM.2011.Interaction between water and carbon cycles in Lushui River simulated using an ecological model driven by remote sensing. Proceedings of Geoinformatics 2011.
9. Ma JD,Ju WM.2011. Mapping leaf index for the urban area of Nanjing city, China using IKONOS remote sensing data. Proceedings of Geoinformatics 2011.
8. Zhu GL, Ju WM, Chen JM, Zhou YL, Li XF, Xu XX. Comparison of Forest Leaf Area Index Retrieval Based on Simple Ratio and Reduced Simple Ratio. 2010, Proceedings of Geoinformatics 2010.
7. Xing BL, Ju WM, Zhou YL, Zhu GL, Li XF, Liu YB, Zhu JF. The Comparison of different methods to measure leaf area index of forests in Maoershan Mountain, northeastern China. 2010, Proceedings of Geoinformatics 2010 .
6. Zhu JF, Ren Y, Ju WM. Effects of land cover types and forest age on evapotranspiration detected by remote sensing in Xiamen City, China. 2010, Proceedings of Geoinformatics 2010.
5. He MZ, Zhou YL, Liu GH, Weimin Ju, Li XF, Zhu GL. Validation of MODIS gross primary productivity for a subtropical coniferous plantation in southern China. 2010, Proceedings of Geoinformatics 2010.
4. Wang J, Ju WM, Li MC, 2009. Characterizing urban growth of Nanjing, China, by using multi-stage remote sensing images and landscape metrics. Proceedings of 2009 Urban Remote Sensing Joint Event .
3. Ju WM, Gao P, Wang J, Li XF, and Chen S, 2008. Assimilation of remote sensing data into a process-based ecosystem model for monitoring changes of soil water content in croplands. Proceedings of SPIE 0277-786X, v.7145, 714517, Geoinfomatics 2008 and Joint Conference on GIS and Built Environment.
2. Zhang CL, Yu H, Gong P, Ju WM, and Pei H, 2008. Remote sensing-based study on the relationship between land brightness temperature and vegetation abundance in Wuhan city. Proceedings of SPIE 0277-786X, v.7147, dx.doi.org/10.1117/12.8133251 Geoinfomatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images.
1. Wang J, Chen JM, Li MC, Ju WM, 2007. GIS-based integrated assessment and decision support system for land use planning in consideration of carbon sequestration benefits.. Proceedings of SPIE 0277-786X, v.6754, Geoinfomatics 2007 : Geospatial information Technology and Applications.
61.何维,江飞,居为民*,2020,利用大气二氧化碳和羰基硫浓度评估陆地生态系统模型碳通量模拟的不确定性.生态学报,40(13):4371-4382.
60.张乾,居为民*,杨凤婷,曹林,冯永康,2016. 森林冠层多角度高光谱观测系统的实现与分析.南京林业大学学报(自然科学版),40(3): 101-107.
59.康婷婷,居为民*,张春华,2016.2001-2011年中国农田最大光能利用率参数时空变化特征.遥感技术与应用,31(4):663-672.
58.杨琳,高苹,居为民*,2016.基于MODIS NDVI数据的江苏省冬小麦物候期提取.江苏农业科学,44(1):315-320.
57.贺巧宁,王怀清,孔萍,戴声佩,杨琳,居为民,2016.江西省森林活动的时空变化及其对干旱的响应. 江西农业学报,28(2):78-84.
56.李登秋,张春华,居为民,刘丽娟,2016.江西省森林净初级生产力动态变化特征及其驱动因子分析.植物生态学报,40(7):643-657.
55.柳艺博,王怀清,居为民,2016.干旱对江西省森林生产力的影响特征.自然灾害学报,25(3):67-76.
54.马利霞,郑光,何维,居为民,程亮,2015.叶方向3维空间分布的地面激光雷达反演与分析.遥感学报,19(4):609-617.
53.康婷婷,居为民*,李秉柏,2015.水稻叶面积指数遥感反演方法对比分析.江苏农业科学,43(5):366-371.
52. 康婷婷,高苹,居为民*,黄金龙,2014. 江苏省农作物最大光能利用率时空特征及影响因子. 生态学报,34(2): 410-420.
51.李登秋,周艳莲, 居为民,王辉民,柳艺博,吴小翠,2014. 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析.植物生态学报,2014, 38 (3): 219–230.
50.昝梅,李登秋,居为民,王希群,陈蜀江,2013.新疆喀纳斯国家自然保护区植被叶面积指数观测与遥感估算. 生态学报, 33 (15):4744-4757.
48.昝梅,李登秋,居为民,王希群, 2013.基于HJ-CCD影像数据的新疆喀纳斯自然保护区植被叶面积指数估算.冰川冻土,35(4):1-10
47.黄金龙, 居为民,郑光,康婷婷, 2013. 基于高分辨率遥感影像的森林地上生物量估算. 生态学报,33(20): 6497-6508.
46.朱高龙,柳艺博,居为民,陈镜明,2013. 4种常用植被指数的地形效应评估. 遥感学报,17(1): 222-234.
45.吴国训,阮宏华,李显风,居为民,耿君,2013. 基于MODIS反演的2000-2011年江西省植被叶面积指数时空变化特征. 南京林业大学学报(自然科学版),37(1): 11-17.
44.张春华,王宗明,居为民,任春颖, 2012. 松嫩平原玉米带农田土壤氮密度时空格局.应用生态学报, 23(4):1220-1229.
43. 张方敏, 居为民, 陈镜明, 王绍强, 于贵瑞, 韩士杰, 2012. 基于遥感和过程模型的亚洲东部陆地生态系统初级生产力分布特征. 应用生态学报, 23(2):307-318.
42. 邢白灵,居为民,朱高龙,柳艺博,朱敬芳,何明珠,2012.呼伦贝尔草原植被覆盖度地面实测与遥感估算研究.江西农业学报, 24(5): 142-147.
41. 刘昭,周艳莲,居为民,高平,2011. 基于BEPS生态模型模拟农田土壤水分动态模拟.农业工程学报,27(3):67-72.
40.刘昭,周艳莲,居为民,高平,2011. 基于集合卡尔曼滤波同化方法的农田土壤水分模拟.应用生态学报,22(11):2943-2593.
39.张春华,王宗明,居为民,任春颖,2011.松嫩平原玉米带土壤碳氮比的时空变异特征,环境科学,32(5):1407-1414.
38.朱高龙,李明泽,居为民,陈镜明,吴中忠,2011.HJ-1CCD与Landsat-5 TM在森林叶面积指数反演中的比较分析. 东北林业大学学报,39(1):127-130.
37.陈崇, 朱延钧,居为民,2011.基于赤池信息准则和人工神经网络的亚热带森林郁闭度遥感估算.江西农业学报,23(5):149-153.
36.陈崇,朱延钧,李显风,居为民, 2011. 不同叶面积指数遥感反演方法对红壤丘陵区森林的适用性分析. 江西农业大学学报, 33(3):0508-0513.
35.朱敬芳,邢白灵,居为民,朱高龙,柳艺博,2011.内蒙古草原植被覆盖度遥感估算,植物生态学报,35(6): 615-622.
34.朱高龙, 居为民, 陈镜明, 柳艺博, 朱敬芳, 邢白灵,2011. 利用POLDER数据验证MODIS BRDF模型参数产品及Ross-Li模型. 遥感学报, 15, 875-894.
33.柳艺博, 居为民, 朱高龙, 陈镜明, 邢白灵, 朱敬芳, 周艳莲,2011. 内蒙古不同类型草地叶面积指数遥感估算. 生态学报, 31, 5159-5170.
32.张方敏,居为民,陈镜明,王绍强,于贵瑞,李英年,韩士杰, J.Asanuma,2010.基于BEPS生态模型对亚洲东部地区蒸散量的模拟.自然资源学报,25(9):1596-1606.
31朱高龙,居为民,JingM. Chen,范文义,周艳莲,李显风,李明泽, 2010.帽儿山地区森林冠层叶面积指数的地面观测与遥感反演.应用生态学报, 21(8):2117-2124.
30.张琳琳,孔繁花,尹海伟,孙振如,庄艳美,居为民, 2010. 基于景观空间指标与移动窗口的济南城市空间格局变化. 生态学杂志, 29(8): 1591-1598.
29.李显风,居为民,陈姝,周艳莲, 2010.地表覆盖分类数据对区域森林叶面积指数反演的影响. 遥感学报,14(5):974-989.
28.曾凯,居为民,涂良瑛,王尚明,张崇华,张清霞,2010.2006—2007年南昌市城郊地带的酸雨特征.农业环境科学学报,29(3):609-612.
27.陈 姝,居为民, 2010,. 常熟市土地利用覆盖变化研究.江苏农业科学, 1: 352-355.
26.周蕾,王绍强,陈镜明,冯险峰,居为民,伍卫星,2009.1991年至2000年中国陆地生态系统蒸散时空分布特征. 资源科学,31(6):962-972.
25.陈新芳,居为民,陈镜明,任立良,陆地生态系统碳水循环的相互作用及其模拟,生态学杂志,28(8):1630-1639.
24.曾凯,王尚明,张崇华,胡逢春,张清霞,居为民,2009,南方稻田生态系统产量形成期CO2通量的研究,中国农学通报,25(15):219-222.
23.张春玲,余华,宫鹏,居为民,基于遥感的土地利用空间格局分布与地表温度的关系,遥感技术与应用,23(4): 378-384.
22.郑光,田庆久,陈镜明,居为民,夏学齐,2006,结合树龄信息的遥感森林生态系统生物量制图,遥感学报,10(6):932-941.
21.高苹,居为民,武金岗,吴洪颜,2002,气象型病虫害预报系统,江苏农业科学,3: 45-48.
20.高苹,居为民,陈宁,金龙,2001.人工神经网络在赤霉病预报中的应用研究. 中国农业气象, 21(4), 21-24.
19.居为民,高苹, 武金岗,2001. 太湖地区小麦赤霉病与南方涛动的关系及其预报, 科技通报, 17(3), 22-26
18.居为民,高苹,陈宁,金龙,2000,神经网络预报模型参数对赤霉病预报精度的影响,气象,26(12), 12-15.
17.居为民,高苹,2000,气象条件对小麦纹枯病发生影响的研究,气象,26(2), 50-53.
16.张旭辉,居为民,2000,近40年江苏省干旱发生规律的研究,灾害学,15(3), 42-45.
15.居为民,高苹,武金岗,2000,菌核病预报方法的预计,植保技术与推广,20(1), 4-6.
14.居为民,高苹,武金岗,2000,气候条件对麦类纹枯病发生趋势影响的研究,植物保护,26(2), 20-22.
13.张中义,刘聪,居为民,2000,南京长江二桥设计风速计算,气象科学,20(2), 200-205.
12.居为民,高苹,2000,赤道太平洋海温异常与太湖地区赤霉病,气象科学,20(4), 511-515.
11.徐萌,居为民,唐勇,1999,应用遥感图像城市热岛效应检测沪宁高速公路大雾,遥感信息, 14, 45-46.
10.孙涵,居为民,1998,气象卫星遥感在农业上应用效益回顾,地方遥感协会年会文集,宇航出版社.
9. 高苹,居为民,1998小麦赤霉病长期预报模型,气象,23(6), 55-57.
8. 孙涵,居为民,汤志成,1997,应用气象卫星遥感资料监测江苏洪涝灾害,地方遥感协会年会文集,宇航出版社.
7. 孙涵,居为民,汤志成,1997,江苏省气象卫星遥感业务系统,地方遥感协会年会文集,宇航出版社。
6. 孙涵,居为民,汤志成,1997,气象卫星遥感业务系统(V3.2)简介,气象,23(12), 18-20.
5. 居为民,孙涵,张中义,徐萌,1997,气象卫星遥感资料在沪宁高速公路大雾检测上的初步应用,遥感信息,13,25-27.
4. 居为民,孙涵,汤志成,1997,应用气象卫星遥感估计洪涝面积,气象科学,17(2), 131-136.
3. 居为民,孙涵,汤志成,1996,应用气象卫星遥感监测干旱,灾害学,11(4),25-29.
2.孙涵,居为民,汤志成,1995,在微机上实现气象卫星遥感与地理信息系统一体化,南京气象学报增刊。
1.孙涵,居为民,汤志成,1995,气象卫星遥感的争取边界拓扑管理. 应用气象学报,6(1),114-117.