1.发表论文
[1].Yin, Z and Lu, Y*. Optical Quantification of Wind-wave Breaking and Regional Variations in Different Offshore Seas Using Landsat-8 OLI Images. Journal of Geophysical Research: Atmosphere, 2025,130, e2024JD041764. https://doi.org/10.1029/2024JD041764
[2].Jiao, J., Lu, Y*., Hu, C. Characterizing oil spills using deep learning and spectral-spatial-geometrical features of HY-1C/D CZI images. Remote Sensing of Environment, 2024, 308: 114205.
[3].Wang, L., Lu, Y*., Wang, M. et al. Mapping of oil spills in China Seas using optical satellite data and deep learning. Journal of Hazardous Materials, 2024, 480: 135809
[4].Yin, Z., Lu, Y., Liu Y. et al. Monitoring discharge from deep-sea mining ships via optical satellite observations. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-024-3264-0.
[5].Suo, Z., Lu, Y*., Liu, J., et al. Extracting iceberg freeboard using shadow length in high-resolution optical images. Geo-Spatial Information Science, 2024, 27(3), 892–901.
[6].M. Wang, L. Wang, J. Jiao, Q. Song, C. Ma, S. Yang, W. Ju, L. Tian, and Lu, Y*. Sea surface Fresnel reflections difference driven de-glint algorithm for airborne optical images, Optics Letters. 2024, 49, 4090-4093.
[7].赵崴,王利锋,牛生丽,吕航,宋舒娴,焦俊男,宋庆君,陆应诚*. 基于多源遥感数据的“交响乐”轮溢油污染监测. 海洋学报,2024,46(9):109–119
[8].Jiao, J., Lu, Y*., Hu, C. Optical interpretation of oil emulsions in the ocean - Part III: A three-dimensional unmixing model to quantify oil concentration. Remote Sensing of Environment, 2023, 296: 113719.
[9].Tang, J., Jiao, J., Suo, Z., Liu, Y and Lu, Y*. Effect of viewing angle difference on spaceborne optical estimation of floating Ulva prolifera biomass in the Yellow Sea. Optics Express, 2023, 31, 29986-29993
[10]. Zhu, X., Lu, Y., Dou, C., and W. Ju. Improving sea surface floating matter identification from Sentinel-2 MSI imagery using optical radiative simulation of neighborhood difference. Optics Express, 2023, 31, 27612-27620.
[11]. Suo, Z., Li, L., Lu, Y* et al. Sunglint reflection facilitates performance of spaceborne UV sensor in oil spill detection. Optics Express, 2023, 31, 14651-14658.
[12].唐君,陆应诚*,焦俊男等. 中国近海绿潮生物量的卫星遥感估算方法研究. 遥感学报. 2023.
[13].朱小波,沈亚峰,刘建强,丁静,焦俊男,居为民,陆应诚*. 基于耀光反射差异的海面溢油遥感识别提取. 遥感学报. 2023, 27(1): 197-208.
[14].赵碧,丁静,刘建强,焦俊男,唐君,陆应诚*. 海洋白帽的高空间分辨率光学遥感估算分析. 遥感学报, 2023, 27(1): 92-103.
[15]. Zhu, X., Lu, Y*, Liu, J., et al. Optical Extraction of Oil Spills from Satellite Images Under Different Sunglint Reflections. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 4210714.
[16]. Zhao, B., Lu, Y*., Ding, J., et al. Discrimination of Oceanic Whitecaps Derived by Sea Surface Wind Using Sentinel-2 MSI Images. Journal of Geophysical Research: Oceans, 2022, 127, e2021JC018208.
[17]. Wang, M., Hu, Q., Zhu, X., Lu, Y*., et al. Correction of multi-scale sunglint reflections from the water surface in airborne high-spatial resolution optical images. Optics Express, 2022, 30, 45910-45917.
[18]. Jiao, J., Lu, Y*., Liu, Y. Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model. Marine Pollution Bulletin. 2022, 178, 113640
[19]. Suo, Z., Lu, Y*., Liu, J., Ding, J., Xing, Q., Yin, D., Xu, F., and Liu, J. HY-1C ultraviolet imager captures algae blooms floating on water surface. Harmful Algae, 2022, 114, 102218
[20]. Wang, Q., Lu, Y*., Hu, C., Hu, Y., Zhang, M., Jiao, J., Xiong, J., Liu, Y., Discrimination of Biomass-Burning Smoke from Clouds Over the Ocean Using MODIS Measurements, IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 4102010.
[21]. X. Wu, Lu, Y*, J. Jiao, J. Ding, W. Fu and W. Qian. Using Sea Wave Simulations to Interpret the Sunglint Reflection Variation with Different Spatial Resolutions, IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1501304, doi: 10.1109/LGRS.2020.3033700.
[22]. Dong, Y., Liu, Y., Hu, C., MacDonald, I.R., Lu, Y. Chronic oiling in global oceans. Science. 2022, 376 (6599), 1300–1304.
[23]. 刘建强,陆应诚*,丁静等,中国海洋水色业务卫星揭示我国近海溢油污染状况,科学通报,2022, 67: 1-12.
[24]. 刘锦超,刘建强,丁静,陆应诚*. HY-1C 卫星CZI 载荷的黄海绿潮提取研究. 海洋学报,2022,44(5):1-11.
[25]. Jiao, J., Lu, Y*., Hu, C., Shi, J., Sun, S., Liu, Y., Quantifying ocean surface oil thickness using thermal remote sensing, Remote Sensing of Environment, 2021, 261: 112513.
[26]. Suo Z, Lu, Y*., Liu, J. et al., Ultraviolet remote sensing of marine oil spills: a new approach of Haiyang-1C satellite, Optics Express, 2021, 29, 13486-13495
[27]. Hu, C., Lu, Y., Sun, S., Liu, Y., 2021. Optical remote sensing of oil spills in the ocean: what is really possible? Journal of Remote Sensing. 2021, 9141902.
[28]. Lu, Y*., Shi, J., Hu, C., Zhang, M., Sun, S., & Liu, Y. Optical interpretation of oil emulsions in the ocean Part II: Applications to multi-band coarse-resolution imagery. Remote Sensing of Environment, 2020, 242: 111778.
[29]. Zhou, Y., Lu, Y*., Shen, Y., Ding, J., Zhang, M., & Mao, Z. Polarized remote inversion of the refractive index of marine spilled oil from PARASOL images under sunglint, IEEE Transactions on Geoscience and Remote Sensing. 2020, 58(4): 2710-2719.
[30]. 沈亚峰, 刘建强, 丁静, 焦俊男, 孙绍杰, 陆应诚*. 海洋一号C星光学载荷对海面溢油的识别能力分析, 遥感学报, 2020, 24(8): 933-944. (封面论文)
[31]. Lu, Y*., Shi J., Wen Y., Hu C., Zhou Y., Sun S., Zhang M., Mao Z., & Y. Liu. Optical interpretation of oil emulsions in the ocean Part I: Laboratory measurements and proof-of-concept with AVIRIS observations, Remote Sensing of Environment, 2019, 230:111183.
[32]. Lu T., Lu, Y*., Hu, L., Jiao, J., Zhang, M., & Liu, Y. Uncertainty in the optical remote estimation of the biomass of Ulva prolifera macroalgae using MODIS imagery in the Yellow Sea. Optics Express, 2019, 27(13), 18620-18627.
[33]. 陆应诚*, 刘建强, 丁静, 石静,陈君颍,叶小敏. 中国东海“桑吉”轮溢油污染类型的光学遥感识别. 科学通报, 2019, 64: 3213–3222. (封面论文)
[34]. Shi, J., Jiao J., Lu, Y*., Zhang M., Mao Z., & Y. Liu. Determining spectral groups to distinguish oil emulsions from Sargassum over the Gulf of Mexico using an airborne imaging spectrometer. ISPRS Journal of Photogrammetry and Remote Sensing. 2018, 146, 251-259.
[35]. Jin, S., Lu, Y*., Liu, Y., et al. Refined use of AISA band-differences for oil slick identification beyond brightness contrast reversal under sunglint, Optics Express, 2018, 26(26):33748-33755.
[36]. Wen, Y., Wang, M., Lu, Y*., Sun, S., Zhang, M., Mao, Z., Shi, J., & Liu, Y. An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint. International Journal of Digital Earth, 2018, 11(9), 972-979.
[37]. 温颜沙, 邓建明, 毛志华, 石静, 周杨, 鲁婷, 陆应诚*. 水面菲涅尔反射对~761 nm叶绿素荧光估算的影响. 遥感学报, 2018, 22(03): 424-431.
[38]. Sun, S., Lu, Y., Liu, Y. et al., Tracking an oil tanker collision and spilled oils in the East China Sea using multisensory day and night satellite imagery. Geophysical Research Letters, 2018, 45:3212-3220
[39]. Lu, Y., Zhou Y., Liu Y., Mao Z., Qian W., Wang M., Zhang M., Xu J., Sun S., and P. Du. Using remote sensing to detect the polarized sunglint reflected from oil slicks beyond the critical angle. Journal of Geophysical Research: Oceans, 2017, 122, 6342-6354.
[40]. Zhou Y., Jiang L., Lu, Y*., Zhan W., Mao Z., Qian W., & Y. Liu. Thermal infrared contrast between different types of oil slicks on top of water bodies. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1042-1045.
[41]. Lu, Y., Zhan W., & C. Hu. Detecting and quantifying oil slick thickness by thermal remote sensing: A ground-based experiment. Remote Sensing of Environment. 2016, 181: 207-217.
[42]. Lu, Y*., Li L., Hu C., Li L., Zhang M., Sun S., & C. Lv. Sunlight induced chlorophyll fluorescence in the near-infrared spectral region in natural waters: Interpretation of the narrow reflectance peak around 761 nm, Journal of Geophysical Research: Oceans, 2016, 121, 5017-5029.
[43]. Lu, Y*., Sun S., Zhang M., Murch B., & C. Hu. Refinement of the critical angle calculation for the contrast reversal of oil slicks under sunglint, Journal of Geophysical Research: Oceans, 2016, 121, 148-161.
[44].陆应诚*, 胡传民, 孙绍杰, 张民伟, 周杨, 石静, 温颜沙. (2016), 海洋溢油与烃渗漏的光学遥感研究进展, 遥感学报,20 (5): 1259-1269.
[45]. Lu, Y*., Q. Tian, X. Wang, G. Zheng, and X. Li (2013). Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China. International Journal of Digital Earth, 6(1): 76-93.
[46]. Lu, Y*., W. Qian, C. Lyu, Q. Tian, D. Lu, and S. Sun (2013). Empirical Relationship among Wavelength, Reflectance, and Concentration of Suspended Particulate Matter in Water Based on a Laboratory Experiment. Optical Review, 20(6):509-512.
[47]. Lu, Y*., X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang (2013). Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories. Marine Geodesy, 36(3): 334-346.
[48]. Lu, Y*., X. Li, Q. Tian, and W. Han (2012). An optical remote sensing model for estimating oil slick thickness based on two-beam interference theory. Optics Express, 20(22): 24496-24504.
[49]. Lu, Y*., Q. Tian and X. Li (2011). The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model. Science China Earth Sciences. 54(5): 678–685.(陆应诚, 田庆久, 李想. 基于浮油膜双光束干涉模型的油膜厚度遥感反演理论. 中国科学: 地球科学, 2011, 41( 4): 541 - 548)
[50]. Lu, Y*, Q. Tian, J. Wang, X. Wang, and X. Qi (2008). Experimental study on spectral responses of offshore oil slick. Chinese Science Bulletin, 53(4): 3937-3941. (陆应诚, 田庆久, 王晶晶, 王向成, 齐小平. 海面油膜光谱响应实验研究. 科学通报, 2008, 53(9): 1085-1088)
[51]. 陆应诚*, 陈君颖, 包颖, 韩文超,李想,田庆久,张秀英. 基于HJ-1星CCD数据的溢油遥感特性分析与信息提取. 中国科学: 信息科学, 2011, 41: 193-201.
[52]. 陆应诚*,田庆久,齐小平,王晶晶,王向成. 海面甚薄油膜光谱响应研究与分析,光谱学与光谱分析,2009, 29(4): 986-989.
[53]. 陆应诚*, 田庆久, 宋鹏飞, 李姗姗. 海面油膜高光谱遥感信息提取. 遥感学报,2009,13(4): 691-695.
2.出版专著

3.专利
[1].一种基于参数查找表的海洋溢油油膜厚度高光谱遥感估算方法(授权),2016.08.03,中国,CN201210531836.5
[2].多用途石油烃光学遥感探测系统(授权),2013.5.8,中国,ZL201320296521.7
[3].一种基于基团光谱特征的海洋溢油乳化物遥感识别方法,中国专利, 申请, 2018.6.12, 201810600772.7
[4].一种基于遥感多光谱影像的NDVI阴影影响去除方法中国专利, 申请, 2018.6.12, 201810600462.5
[5].一种基于耀光反射差异的海面溢油光学遥感检测方法,中国专利, 申请, 2018.9.9, 201811094655.4
[6].一种基于光学卫星数据的海面油膜自动提取方法和装置,中国专利,202411223770.2
[7].基于紫外吸收特征的野火烟霾遥感识别和排放系数估算方法,中国专利,202411398895.9
[8].一种基于紫外反射差异的海冰遥感识别方法,中国专利,202411398824.9