头像
马磊
副教授
地理信息科学系
电话:
邮箱:
maleinju@nju.edu.cn
地址:
办公地址:
邮编:
  • 个人简介

    马磊(1986-),男,四川绵阳人。理学博士,副教授,硕士生导师,德国洪堡学者(Humboldt Research Fellow),注册测绘师,入选美国斯坦福大学全球前2%科学家榜单。主要从事大数据与人工智能技术方法,及其在地理要素提取与地理空间建模领域的研究。主持或参与国家重点研发项目子课题、国家自然科学基金项目(面上+青年)德国洪堡学者基金项目、美国地质调查局地表覆盖连续变化监测项目(USGS-NASA Landsat Science Team Program)、江苏省青年基金项目、中国博士后科学基金(特助+面上)、国家公派研究生项目等国家和部省级多个项目。已发表SCI论文40余篇,被引近6000次,其中有两篇1作论文分别被引2000与1000余次。申请或授权国家发明专利10余件、登记软件著作权5项。担任遥感Top期刊ISPRS-J(IF:12.7)编委、《时空信息学报》青年编委、《Journal of Remote Sensing》青年编委、《Remote Sensing》客座编辑,受邀为诸多国际期刊审稿。获首届国际The Jack Dangermond Award - Best paper、全国高校GIS新锐、江苏省青蓝工程优秀青年骨干教师、江苏省高校测绘本科生优秀毕业论文一等奖指导教师、江苏省优秀博士学位论文等奖励。


    研究领域:大数据与AI技术、地理要素识别、地理空间建模

    承担课程:地理建模》、《GIS空间建模》

    联系方式:maleinju@nju.edu.cn


    欢迎感兴趣的同学联系咨询,并报考研究生!






















  • [30]Ma, L., et al., Deep Learning Meets Object-Based Image Analysis: Tasks, challenges, strategies, and perspectives. IEEE Geoscience and Remote Sensing Magazine, 2024. 10.1109/MGRS.2024.3489952.

    [29]Wang, R., Ma, L.*, et al., Transformers for remote sensing: a systematic review and analysis. Sensors, 2024, 24, 3495. (Invited and feature paper, free charge)

    [28]Ma, L., et al., Projecting high resolution population distribution using Local Climate Zones and multi-source big data. Remote Sensing Applications: Society and Environment, 2024. 33: 101077.

    [27]马磊 等, 深度学习在地学领域的应用进展与挑战. 科学观察, 2023. 18(06): 16-17. (中国地学研究热点论文特约稿

    [26]He, W., Ma, L.*, Yan, Z., Lu, H. Evaluation of advanced time series similarity measures for object-based cropland mapping. International Journal of Remote Sensing, 2023, 44 (12), 3777-3800.

    [25]Ma, L.*, Yan, Z., He, W., Lv, L., He, G., Li, M.* Towards better exploiting object-based image analysis paradigm for local climate zones mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199, 73-86.

    [24]Ma, L.*, Huang, G., Johnson, B.A., Chen, Z., Li, M., Yan, Z., Zhan, W., Lu, H., He, W., Lian, D. Investigating urban heat-related health risk based on local climate zonesA case study of Changzhou in Yangtze River Delta, China. Sustainable cities and society, 2023, 91, 104402.

    [23]Zhou, L., Ma, L.*, JohnsonB.A., Yan, Z., Li, F., Li, M. Patch-Based Local Climate Zones Mapping and Population Distribution Pattern in Provincial Capital Cities of China. ISPRS international journal of geo-information, 2022. 11(420): 420.

    [22]Yan, Z., Ma, L.*, He, W., Zhou, L., Lu, H., Liu, G., Huang, G. Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote sensing, 2022. 14(3744): 3744.Invited and feature paper, free charge

    [21]Ma, L., Yang, Z., Zhou, L., Lu, H., Yin, G. Local climate zones mapping using object-based image analysis and validation of its effectiveness through urban surface temperature analysis in China, Building and Environment , 2021, 206: 108348. 南大学科一流期刊

    [20]Ma, L., Zhu, X.,Qiu, C., Blaschke, T., Li, M. Advances of Local Climate Zone Mapping and Its Practice Using Object-Based Image Analysis, Atmosphere , 2021, 12: 1146

    [19]马磊李满春程亮叶粟面向对象遥感影像分析理论与方法科学出版社, 350千字, 2020.专著

    [18]Ma, L., Schmitt, M., Zhu, X.; Uncertainty Analysis of Object-Based Land-Cover Classification Using Sentinel-2 Time-Series Data, Remote sensing , 2020, 12(22): 3798. 

    [17]Johnson, B.A., Ma, L.*. Image Segmentation and Object-Based Image Analysis for Environmental Monitoring: Recent Areas of Interest, Researchers’ Views on the Future Priorities. Remote Sens. 2020, 12(11), 1772.Editorial paper

    [16]Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G.,... Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166-177. 期刊Top 1高下载,ESI高引https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [15]Ma, L., Li, M. C., Ma, X. X. (2017): A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293. (ESI 高引期刊Top 3高下载)https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [14]Ma, L., Cheng, L., Li, M. C., Liu, Y., Ma, X. X. (2015): Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 14-27.(期刊高引)https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [13]Ma, L., Fu, T. Y., Blaschke, T., Li, M. C., Tiede, D., Zhou, Z. J., Ma, X. X., Chen, D. (2017): Evaluation of feature selection methods for object-based land cover mapping of Unmanned Aerial Vehicle imagery using Random Forest and Support Vector Machine classifiers. ISPRS International Journal of Geo-Information6(2), 51/1-51/22.(ESI,期刊创刊以来十大高引 The Jack Dangermond Award –国际摄影测量与遥感协会 2017最佳论文)https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [12]Li, M. C., Ma, L.*, Blaschke, T., Cheng, L., Tiede, D. (2016): A systematic comparison of different object-based classification techniques using high spatial resolution imagery. International Journal of Applied Earth Observation and Geoinformation, 49, 87-98. (ESI 高引, 20177/8月统计数据)https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [11]Ma, L., Fu, T. Y., Li, M. C. (2018): Active learning for object-based image classification using predefined training objects. International Journal of Remote Sensing, 39:9, 2746-2765.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [10]Zhou, Z., Ma, L.*, Fu, T., Zhang, G., Yao, M.,... Li, M. (2018). Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms. ISPRS International Journal of Geo-Information, 7(11), 441. https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [9]Fu, T., Ma, L.*, Li, M. C., Johnson, B. A. (2018): Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery. Journal of Applied Remote Sensing, 12(2), 025010.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [8]Ma, L., Li, M. C., Blaschke, T., Ma, X. X., Tiede, D., Cheng, L., Chen, Z. J., Chen, D. (2016): Object-Based Change Detection in urban areas: the effects of segmentation strategy, scale, and feature space on unsupervised methods. Remote Sensing, 8(9), 761.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [7]Ma, L., Gao, Y., Fu, T., Cheng, L., Chen, Z., Li, M. (2017): Estimation of Ground PM2.5 Concentrations using a DEM-assisted Information Diffusion Algorithm: A Case Study in China. Scientific Reports, 7, 15556.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [6]Ma, L., Li, M. C., Gao, Y., Chen, T., Ma, X. X., Qu, L. A. (2017): A novel wrapper approach for feature selection in object-based image classification using ppolygon-based cross-validation. IEEE Geoscience and Remote Sensing Letters, 14(3), 409-413.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [5]Ma, L., Cheng, L., Han, W. Q., Zhong, L. S., Li, M. C. (2014): Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data. Journal of Applied Remote Sensing, 8, 1-25.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [4]Ma, L., Li, Y. S., Liang, L., Li, M. C., Cheng, L. (2013): A novel method of quantitative risk assessment based on grid difference of pipeline sections. Safety Science, 59, 219-226.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [3]Ma, L.Cheng, L., Li, M. C. (2013): Quantitative risk analysis of urban natural gas pipeline networks using geographical information systems. Journal of Loss Prevention in the Process Industries, 26, 1183-1192.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [2]Gao, Y., Ma, L.*, Liu, J. X., Zhuang, Z. Z., Huang, Q. H., Li, M. C. (2017): Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China. Scientific Reports, 7, 46073.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf

    [1]Cheng, L., Li, S., Ma, L.*,Li, M. C., Ma, X. X. (2015): Fire spread simulation using GIS: Aiming at urban natural gas pipeline. Safety Science, 75, 23-35.https://webplus.nju.edu.cn/_ueditor/themes/default/images/spacer.gifpublication.pdf


  • 在研项目

    2024-2027,江苏省自然科学基金面上项目,大数据与人工智能支持的城市精细空间热健康风险感知,主持

    2022-2025,国家自然科学基金面上项目,面向对象城市局地气候分区遥感分类方法研究,主持

    2024-2025,自然资源部国土卫星遥感应用重点实验室(开放基金项目),城市生态空间监测与综合分析评价方法研究,主持

    2023-2025,遥感科学国家重点实验室(开放基金项目),基于多源大数据的城市热健康风险评估研究,主持


    结题项目

    2017-2021,国家重点研发项目子课题,南海情势推演与决策支持系统,主持

    2018-2020,国家自然科学青年基金项目,面向对象高分遥感影像分类的不确定性及模型优化研究,主持

    2017-2020,江苏省青年基金项目,基于机器学习的面向对象遥感影像分类方法研究,主持

    2019-2022,国家自然科学基金面上项目,面向对象的城市绿化覆盖多时相高分辨率遥感图像协调识别,参与

    2019-2022,国家自然科学青年基金项目,市域尺度耕地景观格局演变时空过程模型研究,参与

    2019-2021,洪堡基金会研究项目,Improving Long-term Analysis of Urbanization in European and Asian Megacities via Object-based Image Analysis of Landsat/Sentinel-2 Data,主持

    2023-2024,水力学与山区河流开发保护国家重点实验室(开放课题),黄河流域四川段水源涵养能力影响机制研究,主持

    2017-2018,中国博士后科学基金特别资助项目,南海岛礁面向对象遥感变化监测研究,主持

    2016-2018,中国博士后科学基金面上资助项目(一等资助),面向对象遥感影像分析的不确定性研究,主持

    2017-2018,江苏省博士后资助项目,面向对象高分遥感影像分析范式研究,主持

    2017-2017,中央高校基本科研业务费项目,南京大学国家自然科学基金培育项目,主持

    2018-2021USGS-NASA Landsat Science Team ProgramToward Near Real-time Monitoring and Characterization of Land Surface Change for the Conterminous US,参与

    2014-2017,国家自然科学基金面上项目,“空-车”LiDAR点云数据一体化的高质量自动集成方法研究,参与

    2015-2018,国家自然科学基金面上项目,粉砂淤泥质海岸带潮沟系统演化过程及其对人类活动相应的遥感监测研究——以江苏中部沿海为例,参与

    2016-2019,国家自然科学青年基金项目,基于结构单元探测与修复的车载LiDAR数据建筑物立面模型三维重建研究,参与

    2011-2014国家自然科学基金面上项目,GPSPS-InSAR联网监测的龙门山震后滑坡时空演变特征研究参与


  • (23)The top 10 reviewers for JAG for the calendar year of 2023

    (22)“领航杯”江苏省教师信息素养提升实践活动二等奖(2023

    (21)The top 30 reviewers of the ISPRS J. for both 2021 and 2022(2023, 6/30)

    (20)江苏省青蓝工程优秀青年骨干教师2023

    (19)第七届全国高校GIS青年教师讲课竞赛二等奖(2023

    (18)郑钢基金-学业导师优秀示范奖(南京大学,2023,1/1

    (17)测绘科学技术奖一等奖(中国测绘学会,2022,13/15

    (16)全国高校GIS新锐(高等院校GIS论坛组委会,2022,1/1

    (15)第九届高校GIS论坛优秀教学成果奖(国家地理信息系统系统工程技术研究中心,2021,排名:5/8

    (14)地理信息科技进步奖特等奖(中国地理信息产业协会,2021,30/30)

    (13)洪堡学者荣誉证书(德国洪堡基金会,2021,排名:1/1

    (12)江苏省高校测绘本科生优秀毕业论文一等奖指导教师(江苏省测绘地理信息学会,2021,排名:1/1

    (11)第八届高校GIS论坛优秀教学成果奖(国家地理信息系统系统工程技术研究中心,2020,排名:8/8

    (10)The Jack Dangermond Award(国际摄影测量与遥感学会,2019,排名:1/8)

    (9)国土资源科学技术奖一等奖(自然资源部,2019,排名:13/15

    (8)第二届全国高等学校GIS教学成果奖特等奖(教育部,2019,排名:13/15

    (7)江苏省测绘地理信息优秀青年科技工作者(江苏省测绘地理信息学会,2018,排名:1/1

    (6)第一届“中国高分杯”智慧旅游挑战大赛(国防科工局重大专项工程中心,2018,排名:2/5

    (5)江苏省优秀博士学位论文(江苏省教育厅,2017,排名:1/1

    (4)中国博士后科学基金特别资助奖励(中国博士后科学基金会,2017,排名:1/1

    (3)国家公派留学奖学金(国家留学基金委,2014

    (2)博士研究生国家奖学金(教育部,2013

    (1)西南交通大学优秀硕士论文(西南交通大学,2012


  • 1)国际遥感Top期刊《ISPRS-J》(IF 12.7)编委(2022-);

    2)《时空信息学报》青年编委(2023-);

    3)《SCIENCE》伙伴期刊《Journal of Remote Sensing》青年编委(2022-);

    4)《遥感技术与应用》青年编委(2021-);

    5)江苏省人工智能学会专委会委员;

    6Remote Sensing客座编辑,受国际同行邀请参与组织遥感影像分析专题特刊3个:“Image Segmentation for Environmental Monitoring”“Multi-Task Deep Learning for Image Fusion and Segmentation”“Deep Learning for Very-High Resolution Land-Cover Mapping”

    7RSEISPRS-JIEEE-TGRS、IEEE TPAMI、INFORM FUSION等多个国际杂志审稿专家,以及教育部学位论文评审专家

    8)国家自然科学基金、广东省基础与应用基础研究基金自然科学基金、国家公派留学基金等项目评审专家。



版权所有 © 南京大学