头像
占文凤
教授
地理信息科学系
电话:
邮箱:
zhanwenfeng@nju.edu.cn
地址:
江苏省南京市南大仙林校区昆山楼
办公地址:
江苏省南京市南大仙林校区昆山楼
邮编:
  • 实验室招收本科生、硕士生、博士生、博士后或助理研究员(专职科研岗)。热忱欢迎对卫星热红外遥感与城市热环境遥感研究领域感兴趣的同学、老师加盟团队或者前来合作[zhanwenfeng@nju.edu.cn]。共同为热红外遥感理论及应用事业添砖加瓦!


    如下招聘长期有效:

    南京大学招聘国际地球系统科学研究所研究系列人员

    https://hr.nju.edu.cn/c3/fc/c5979a443388/page.htm 


    在热红外遥感算法、理论或方法论方面,我们关注[卫星热红外遥感时空建模、产品拓展、优化与验证];在城市热环境遥感应用方面,我们主要围绕从城市街区到全球城市、从日内瞬时到年际变化乃至未来预测、从地下深处到大气边界层[城市热环境系统的格局、演变、机制及应对/适应]


    个人信息

    姓名:占文凤/詹文凤

    职称:教/

    地址:江省南京市栖霞区仙林大道163号南大仙林校区昆山楼

    邮箱:zhanwenfeng@nju.edu.cn; zhanwenfeng@foxmail.com

    方向:热红外遥感时空建模理用、城市热环境遥感

    http://gis.nju.edu.cn/rs.asp?ID=80


    研究领域

    l热红外遥感

    l城市热环境遥感


    背景经历


    2018.01-至今教授/博导,国际地球系统科学研究所,南京大学[NJU]

    2018.12-2019.12访问学者,森林与环境学院,美国耶鲁大学[Yale]

    2016.09-2017.12副教授/博导,国际地球系统科学研究所,南京大学[NJU]

    2012.08-2016.08副教授/硕导,国际地球系统科学研究所,南京大学[NJU]

    2010.09-2011.07博士生联合培养,地理学院,加拿大西安大略大学[UWO]

    2007.09-2012.07理学博士(地图学与地理信息系统),北京师范大学[BNU]

    2003.09-2007.06工学学士(遥感科学与技术-摄影测量与电子工程),武汉大学[WHU]


    研究经历

    2008.07-至今热红外遥感理论与城市热环境遥感

    2007.07-2008.06遥感与地理信息系统开发[Java + Oracle spatial]  

    2006.11-2007.06合成孔径雷达干涉测量地理编码

    2006.03-2006.10多源遥感影像融合


    教授

    本科生课程:《遥感概论》与《数据掘》

    研究生课程:《热红外遥感


    Short Bio

    Born in Oct. 1986, Dr. Wenfeng Zhan [Standard Chinese: 占文凤/詹文凤; Gan Chinese, 赣语-宜浏片: Dēn Wèn Fŏng] currently holds a Full Professor position in the International Institute for Earth System Science (ESSI) affiliated with Nanjing University (NJU). Initially educated as an engineer on photogrammetry and remote sensing (with a special focus on electronic engineering, Class number: 03011/RSS031) in Wuhan University (WHU), he then continued to accomplish his Ph.D. pursuing science in Geography in Beijing Normal University (BNU) and later in The University of Western Ontario (UWO) as a visiting student. He has worked extensively on the theories, methodology, and applications of satellite thermal remote sensing, with special foci on topics including urban thermal anisotropy, disaggregation of land surface temperature, temporal interpolation (or extrapolation) of satellite-derived LSTs, and urban heat island, which are supported by funding agencies such as National Natural Science Foundation of China and Natural Science Foundation of Jiangsu Province.   



  • 著作

    • 共发表(含接收)SCI论文65篇,其中Remote Sensing of Environment 20

    • 发表一作/通作期刊论文33篇,其中SCI论文28篇,《测绘学报》等核心期刊论文5

    • 申请国家发明专利5

    一作/通作论文列表

    Journal name

    Num.

    Remote Sensing of Environment

    10

    Environmental Science & Technology

    1

    Journal of Hydrology

    1

    Building and Environment

    2

    ISPRS Journal of Photogrammetry and Remote Sensing

    3

    IEEE Transactions on Geoscience and Remote Sensing

    4

    Journal of Cleaner Production

    1

    Journal of Geophysical Research– Atmospheres

    2

    International Journal of Applied Earth Observation and   Geoinformation

    1

    Remote Sensing

    1

    IEEE Geoscience and Remote Sensing Letters

    1

    地理学报

    1

    测绘学报

    1

    遥感学报

    1

    地球科学进展

    2

    地理与地理信息科学

    1

    总数

    33

    Publication

    (1) Main Publications (*the corresponding author)

    • l  Spatial modeling: On disaggregation of remotely sensed land surface temperature (DLST)

    [1]Gao, L., Zhan, W.*, Huang, F., Quan, J., Lu, X., Wang, F., Ju, W., Zhou, J. Localization or globalization? Determination of the optimal regression window for disaggregation of land surface temperature. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1), 477-490.

    [2]Tetralogy-IV:  Gao, L., Zhan, W.*, Huang, F., Zhu, X., Zhou, J., Quan, J., Du, P., Li, M. Disaggregation of remotely sensed land surface temperature: A simple yet flexible index (SIFI) to assess method performances. Remote Sensing of Environment, 2017, 200, 206–219.

    [3]Tetralogy-III:Zhan, W., Huang, F., Quan, J., Zhu, X., Gao, L., Zhou, J., Ju, W. Disaggregation of remotely sensed land surface temperature: A new dynamic methodology. Journal of Geophysical Research – Atmospheres, 2016, 121(18), 10391–11153. doi: 10.1002/2016JD024891.

    [4]Tetralogy-II:   Chen, Y., Zhan, W.*, Quan, J., Zhou, J., Zhu, X., Sun, H. Disaggregation of remotely sensed land surface temperature: A generalized paradigm. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9), 5952-5965.

    [5]Tetralogy-I:Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J., Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 2013, 131, 119-139.

    [6]Prequel-III:Zhan, W., Chen, Y., Wang, J. F., Zhou, J., Quan, J., Liu, W., Li, J. Downscaling land surface temperatures through multi-spectral and multi-resolution bands. International Journal of Applied Earth Observation and Geo-information, 2012, 18, 23-36.

    [7]Prequel-II:Zhan, W., Chen, Y., Zhou, J., Li, J., Liu, W. Sharpening thermal imageries: a generalized theoretical framework from an assimilation perspective. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2), 773-789.

    [8]Prequel-I:Zhan, W., Chen, Y., Zhou, J., Li, J. An algorithm for separating soil and vegetation temperatures with sensors featuring a single thermal channel. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5), 1796-1809.

    • lTemporal modeling: On interpolation (or extrapolation) of temporally discrete surface or subsurface temperatures

    [9]Liu, Z., Zhan, W.*, Lai, J., Hong, F., Quan, J., Bechtel, B., Huang, F., Zou, Z. Balancing prediction accuracy and generalization ability: A hybrid framework for modelling the annual dynamics of satellite-derived land surface temperatures. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 189-206.

    [10]Hong, F., Zhan, W.*, Göttsche, F.-M., Liu, Z., Zhou, J., Huang, F., Lai, J., Li, M. Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 190–204.

    [11]Zou, Z., Zhan, W.*, Liu, Z., Bechtel, B., Gao, L., Hong, F., Huang, F., Lai, J. Enhanced modeling of annual temperature cycle with temporally discrete remotely sensed thermal observations. Remote Sensing, 2018, 10(4), 650; https://doi.org/10.3390/rs10040650.

    [12]Lu, Y., Zhan, W.*, Hu, C. Detecting and quantifying oil slick thickness by thermal remote sensing: A ground-based experiment. Remote Sensing of Environment, 2016, 181, 207–217.

    [13]Huang, F., Zhan, W.*, Ju, W., Wang, Z. Improved reconstruction of soil thermal field using two-depth measurements of soil temperature. Journal of Hydrology, 2014, 519, 711–719.

    [14]Huang, F., Zhan, W.*, Duan, S.-B., Ju, W., Quan, J. A generic framework for modeling diurnal land surface temperatures with remotely sensed thermal observations under clear sky. Remote Sensing of Environment, 2014, 150, 140–151.

    [15]Zhan, W., Zhou, J., Ju, W., Li, M., Sandholt, I., Voogt, J., & Yu, C. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model. Remote Sensing of Environment, 2014, 143, 1-14.

    [16]Zhan, W., Chen, Y., Voogt, J., Zhou, J., Wang, J., Liu, W., Ma, W. Interpolating diurnal surface temperatures of an urban facet using sporadic thermal observations. Building and Environment, 2012, 57, 239-252.

    • lAngular modeling: On urban thermal anisotropy

    [17]Jiang, L., Zhan, W.*, Voogt, J. A., Zhao, L., Gao, L., Huang, F., Cai, Z., & Ju, W. Remote estimation of complete urban surface temperature using only directional radiometric temperatures. Building and Environment, 2018, 135, 224–236.

    [18]Zhan, W., Chen, Y., Voogt, J. A., Zhou, J., Wang, J., Ma, W., Liu, W. Assessment of thermal anisotropy on remote estimation of urban thermal inertia. Remote Sensing of Environment, 2012, 123, 12–24.

    [19]Zhan, W., Chen, Y., Ma, W., Zhou, J., Li, J. FOV effect analysis in directional brightness temperature observations for urban targets. Journal of Remote Sensing, 2010, 14(2), 379-386. [占文凤, 陈云浩, 马伟, 周纪. 城市目标方向亮温观测的视场效应分析. 遥感学报, 2010, 14(2), 379-386.]

    [20]Zhan, W., Zhou, J., Ma, W. Computer simulation of land surface thermal anisotropy based on realistic structure model: A review. Advances in Earth Science, 2009, 24(12), 1309-1317. [占文凤, 周纪, 马伟. 基于真实结构的地表热辐射方向性计算机模拟研究进展. 地球科学进展, 2009, 24(12), 1309-1317.]

    • lOn urban heat island and related

    [21]Jiang, S., Zhan, W.*, Yang, J., Liu, Z., Huang, F., Lai, J., Li, J., Hong, F., Huang, Y., Chen, J., & Lee, X. Urban heat island studies based on local climate zones: A systematic overview. Acta Geographica Sinica, 2020, in press. [江斯达, 占文凤, 杨俊, 刘紫涵, 黄帆, 赖佳梦, 李久枫, 洪发路, 黄媛, 陈吉科, 李旭辉. 局地气候分区框架下城市热岛时空分异特征研究进展. 地理学报, 2020, 接收待刊.]

    [22]Wang, C., Zhan, W.*, Liu, Z., Li, J., Li, L., Fu, P., Huang, F., Lai, J., Chen, J., Hong, F., & Jiang, S. Satellite-based mapping of the universal thermal climate index over the Yangtze River Delta Urban Agglomeration. Journal of Cleaner Production, 2020, in press.

    [23]Huang, F., Zhan, W. F.*, Wang, Z.-H., Voogt, J. A., Hu, L. Q., Quan, J. L., Liu, C., Zhang, N., & Lai, J. Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sensing of Environment, 2020, in press.

    [24]Lai, J., Zhan, W.*, Huang, F., Voogt, J., Bechtel, B., Allen, M., Peng, S., Hong, F., Liu, Y., & Du, P.* Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment, 2018, 217, 203-220.

    [25]Zou, Z., Huang, F., Lai, J., Liu, Z., Zhan, W.* Impacts of temporal upscaling methods on calculation of surface urban heat island intensity. Geography and Geographical Information Science, 2018, 34(3), 26-31. [邹照旭, 黄帆, 赖佳梦, 刘紫涵, 占文凤*. 时间升尺度方法对城市地表热岛强度计算的影响研究. 地理与地理信息科学, 2018, 34(3), 26-31.]

    [26]Lai, J., Zhan, W.*, Huang, F., Quan, J., Hu, L., Gao, L., Ju, W. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139, 212–227.

    [27]Huang, F., Zhan, W.*, Wang, Z., Wang, K., Chen, J. M., Liu, Y., Lai, J., Ju, W. Positive or negative? urbanization-induced variations in diurnal skin-surface temperature range detected using satellite data. Journal of Geophysical Research – Atmospheres, 2017, 122(24), 13229–13244. doi:10.1002/2017JD027021.

    [28]Fang, M., Ju, W.*, Zhan, W.*, Cheng, T., Qiu, F., & Wang, J. A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves. Remote Sensing of Environment, 2017, 196, 13–27.

    [29]Zhou, Y., Jiang, L., Lu, Y.*, Zhan, W.*, Mao, Z., Qian, W., & Liu, Y. Thermal infrared contrast between different types of oil slicks on top of water bodies. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7), 1042-1045.

    [30]Fang, Y., Zhan, W.*, Huang, F., Gao, L., Quan, J., & Zou, Z. Hourly variation of surface urban heat island over the Yangtze River Delta urban agglomeration. Advances in Earth Science, 2017, 32(2), 187-198, doi:10.11867/j.issn.1001-8166.2017.02.0187. [方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律. 地球科学进展, 2017, 32(2), 187-198.]

    [31]Huang, F., Zhan, W.*, Voogt, J. A., Hu, L., Wang, Z., Quan, J., Ju, W., & Guo, Z. Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. Remote Sensing of Environment, 2016, 186, 1−12, doi: 10.1016/j.rse.2016.08.009.

    [32]Zhan, W., Ju, W., Hai, S., Ferguson, G., Quan, J., Tang, C., Guo, Z., Kong, F. Satellite-derived subsurface urban heat island. Environmental Science & Technology, 2014, 48, 12134−12140.

    [33]Zhan, W., Chen, Y., Zhou, J., Li, J. Spatial simulation of urban heat island intensity based on the support vector machine technique: A case study in Beijing. Acta Geodaetica et Cartographica Sinica, 2011, 40(1), 96-103. [占文凤, 陈云浩, 周纪, 李京. 基于支持向量机的北京城市热岛模拟热岛强度空间格局曲面模拟及其应用. 测绘学报, 2011, 40(1), 96-103.]

    (2) 

  • 主持项目

    2019.01-2021.12中组部第四批万人计划青年拔尖人才支持计划项目

    2018.07-2021.06江苏省杰出青年科学基金项目

    2017.07-2022.06国家重点研发计划项目(全球变化驱动下陆表自然和人文要素相互作用及区域表现)子课题

    2016.07-2021.06国家重点研发计划项目(基于多源卫星遥感的高分辨率全球碳同化系统研究)子课题

    2017.01-2020.12国家自然科学基金面上项目(顾及地表热力属性的城市群局地气候遥感分区及时空格局

    2014.04-2017.03南京大学登峰人才支持计划(B类,地理学)

    2014.01-2016.12国家自然科学基金青年项目(热红外遥感支持下浅层土壤温度的四时间尺度模型与高分辨率重建)

    2013.12-2016.12国家高技术研究发展计划(全球生态系统与表面能量平衡特征参量生成与应用)子课题

    2013.07-2016.06江苏省自然科学基金青年项目(遥感支持下城市地下热环境的时空格局与剖面耦合模拟)

    2013.01-2014.12地表过程与资源生态国家重点实验室开放课题(耦合地表温度时空变异模型的遥感组分温度分离方案)

    2012.07-2014.06遥感科学国家重点实验室开放基金(顾及时间动态模型的遥感地表温度分解同化范式)

  • 荣誉获奖

    2019测绘科技进步奖一等奖(本年度一等奖中排名第一;序2

    2019国土资源科学技术奖一等奖(序14

    2019第四届全国定量遥感学术论坛优秀报告奖(指导研究生为洪发路)

    2019南京大学青年五四奖章

    2018中组部第四批万人计划青年拔尖人才支持计划

    2018第二届国际城市生态学会中国分会(SURE-China)学术研讨会暨第七届城市生态论坛优秀海报奖(指导研究生为姜璐)

    2018第五届全国青年地学论坛青年研究生奖一等奖(指导研究生为赖佳梦)

    2018江苏省优秀硕士学位论文指导教师(指导研究生为高伦)

    2018南京大学新华报业优秀青年教师奖

    2018江苏省杰青

    2017葛宗亮奖教金(南京大学地理与海洋科学学院优秀本科生班主任)

    2017全国高校GIS教学成果奖特等奖(序10

    2016江苏省优秀硕士学位论文指导教师(指导研究生为黄帆)

    2015科技部首届遥感青年科技人才创新资助计划(国家遥感中心,全国共30人)

    2014南京大学登峰计划-B类(地理学)

    2013北京市优秀博士学位论文(北京师范大学地理学相关专业首次入选)

    2012北京师范大学周廷儒奖(北京师范大学地理学相关领域的六个学院/研究院2012届博士毕业生,第1名,本届博士毕业人数>100人)

    2007湖北省优秀本科毕业论文(合成孔径雷达干涉测量地理编码,一等奖)

    2007武汉大学优秀毕业生(遥感学院年级GPA1名,本年级约160人)

    2005武汉大学王之卓奖


  • 学术兼职(节选)

    l  江苏省地理学会青年工作委员会副主任委员

    l  IEEE Geoscience and Remote Sensing Letters副主编

    l  Remote Sensing客座编辑

    l  《遥感技术与应用》青年编委

    l  荷兰太空署基金评审人

    l  澳大利亚斯威本科技大学Swinburne University of Technology博士学位论文外部评审人

    l  IEEE会员、AGU会员

    l  RSE, EST, JGR, IEEE TGRS, ISPRS-J30余本国际期刊评审人与《遥感学报》等中文期刊评审人


版权所有 © 南京大学